Gibbs Sampling

Introduction

Let’s first recall the Motif Finding Problem: given a set of n DNA sequences each of length t, find the profile (a set of l-mers, one from each sequence) that maximizes the consensus score.

We have already seen various naive brute-force approaches for solving this problem. In this lecture, we will apply a probabilistic method known as Gibbs Sampling to solve this problem.

A probabilistic approach to Motif Finding

We can generalize the Motif Finding Problem as follows: given a multivariable scoring function $f(y_1, y_2, \ldots, y_n)$, find the vector $\mathbf{\hat{y}}$ that maximizes f.

Consider a probability distribution p where $p \sim f$. Intuitively, if f is relatively large at the optimum, then if we repeatedly sample from the probability distribution p, then we are likely to quickly encounter the optimum.

Gibbs Sampling provides us a method of sampling from a probability distribution over a large set.

We will use a technique known as simulated annealing to transform a probability distribution into one that has a relatively tall peak at the optimum, to ensure that Gibbs sampling is likely to quickly encounter the optimum. In particular, we will observe visually that the probability distribution $p \sim f^{1/T}$, for a sufficiently small T, is a good choice.
Gibbs Sampling

Gibbs Sampling solves the following problem.

- Input: a probability distribution \(p(y_1, y_2, \ldots, y_n) \), where each \(y_i \in S \).
 \(|S|^n\) may be big, but \(|S|\) is assumed to be manageable.
- Output: a random \(\mathbf{y} \) chosen from the probability distribution \(p \).

Gibbs Sampling uses the technique of Monte Carlo Markov Chain simulation. The idea is to set up a Markov Chain having \(p \) as its steady-state distribution, and then simulate this Markov Chain for long enough to be confident that an approximation of the steady-state has been attained. The final state of the simulation approximately represents a sample from the steady-state distribution.

Let’s now define our Markov Chain. The set of states of our Markov Chain is \(S^n \). Transitions exist only between states differing in at most one coordinate. For states \(\mathbf{y} = (y_1, \ldots, y_m, \ldots, y_n) \) and \(\mathbf{y}' = (y_1, \ldots, y'_m, \ldots, y_n) \), we define the transition probability \(T(\mathbf{y} \rightarrow \mathbf{y}') = \frac{1}{n} \frac{p(y_1, \ldots, y'_m, \ldots, y_n)}{\sum_{y_m} p(y_1, \ldots, y_m, \ldots, y_n)} \).

We now show that the distribution \(p \) is a steady-state distribution of our Markov Chain.

Recall that the defining property of a steady-state distribution \(\pi \) is

\[\pi T = \pi \]

This property is known as \textit{global balance}.

The stronger property

\[\pi(\mathbf{y}) T(\mathbf{y} \rightarrow \mathbf{y}') = \pi(\mathbf{y}') T(\mathbf{y}' \rightarrow \mathbf{y}) \]

is known as \textit{detailed balance}. We can see that detailed balance implies global balance by summing both sides of the detailed balance condition over \(\mathbf{y}' \):

\[\sum_{\mathbf{y}'} \pi(\mathbf{y}) T(\mathbf{y} \rightarrow \mathbf{y}') = \sum_{\mathbf{y}'} \pi(\mathbf{y}') T(\mathbf{y}' \rightarrow \mathbf{y}) \]

\[\pi(\mathbf{y}) \sum_{\mathbf{y}'} T(\mathbf{y} \rightarrow \mathbf{y}') = \sum_{\mathbf{y}'} \pi(\mathbf{y}')T(\mathbf{y}' \rightarrow \mathbf{y}) \]

\[\pi(\mathbf{y}) = (\pi T)(\mathbf{y}) \]

Therefore, let’s just check whether \(p \) satisfies detailed balance. If \(\mathbf{y}' \) differs from \(\mathbf{y} \) in zero or more than one place, then detailed balance trivially holds (in the latter case,
both sides of the detailed balance condition evaluate to zero). So, suppose that \(\mathbf{y}' \) differs from \(\mathbf{y} \) in only one place, say coordinate \(m \). The left-hand-side of the detailed balance condition evaluates to \(p(\mathbf{y}') \frac{1}{n} \sum_{y_m} p(y_1, \ldots, y_m, \ldots, y_n) \). The right-hand-side evaluates to \(p(\mathbf{y}) \frac{1}{n} \sum_{y_m} p(y_1, \ldots, y_m, \ldots, y_n) \). The two sides are equal, as desired.

Therefore, \(p \) is indeed the steady-state distribution of our Markov Chain.

Scoring profiles

Let’s investigate a probabilistic approach to scoring profiles, as an alternative to simply using the consensus score.

We assume a background frequency \(P_x \) for character \(x \).

Let \(C_{x,i} \) denote the number of occurrences of character \(x \) in the \(i^{th} \) column of the profile. We call this the profile matrix.

Then, in the background, the probability that a profile has profile matrix \(C \) is given by

\[
prob(C) = \prod_{i=0}^{l-1} \left(C_{a,i} \ C_{c,i} \ C_{g,i} \ C_{t,i} \right)^{n} P_a^{C_{a,i}} P_c^{C_{c,i}} P_g^{C_{g,i}} P_t^{C_{t,i}}
\]

\[
\sim \prod_{x,i} \frac{1}{C_{x,i}!} P_x^{C_{x,i}}
\]

Since the profile corresponding to the actual motif locations should have small background probability, we assign

\[
\text{score}(C) \sim 1/prob(C)
\]

\[
\sim \prod_{x,i} C_{x,i}! P_x^{-C_{x,i}}
\]

Now, \(\log (n!) = \Theta(n \log n) \). Therefore,

\[
\text{score}(C) \sim \exp \left(\sum_{x,i} C_{x,i} \log \frac{C_{x,i}}{P_x} \right)
\]

The exponent is known as the entropy of the profile.

In summary, maximizing the entropy, rather than the consensus score, is a statistically more adequate approach of finding motifs.
Motif finding via Gibbs Sampling

Here is pseudocode for Motif Finding using the Gibbs Sampling technique.

1. Randomly generate a start state \(y_1, \ldots, y_n \).
2. Pick \(m \) uniformly at random from \(1, \ldots, n \).
3. Replace \(y_m \) with \(y'_m \) picked randomly from the distribution that assigns relative weight \(1/\text{prob}(C(y_1, \ldots, y'_m, \ldots, y_n)) \) to \(y'_m \).
4. \(<\text{do whatever with the sample}>\)
5. Goto step 2.

Note that we are just doing a simulation of the Markov Chain defined by the Gibbs Sampling technique.

Simulated Annealing

Annealing is a process by which glass is put into a highly durable state by a process of slow cooling.

We can use the same idea here: to amplify the probability of sampling at the optimum of a probability distribution \(p \), we instead sample from \(p^{1/T} \) where \(T \to 0 \).

Figure 19.1 shows us a graph of a probability distribution \(p \). The optimum occurs at state 4, but there are other peaks that have significantly large height.

![Figure 19.1: Graph of a probability distribution \(p \).](image)
Figures 19.2 and 19.3 show the graphs of the probability distributions p^5 and p^{50} respectively. The height of the peak at state 4 has increased considerably with respect to the heights of the other peaks.

Figure 19.2: Graph of p^5.

Figure 19.3: Graph of p^{50}.

How do we find the right T? Here are two possible approaches: we can either drop T by a small amount after reaching steady-state, or we can drop T by a small amount at each step.

Some questions that we didn’t answer

- For how long should we run the Markov Chain?
- How often can we sample?