Problem 1. Find a circuit with $cn \log n$ gates that gives a good approximation to QFT on n qubits. (c is a constant.)

Solution:

The circuit in Fig. 5.1 consists of $\frac{n(n+1)}{2}$ gates. In order to find a circuit with $cn \log n$ gates, we approximate the operators $R_j = |0\rangle\langle 0| + \exp(2\pi i / 2^j)|1\rangle\langle 1|$ by the identity operator for $j > k = c\log_2 n$. Then, clearly the number of gates on each line of Fig. 5.1 is less than or equal to $c \log n$, and therefore, the total number of gates is on the order of $n \log n$. Now, we find the error due to this approximation. If we denote the operation by the ideal QFT circuit by U and our approximation by V, for any basis vector $|j\rangle$, from (5.9) and (5.18), we have

$$U|j\rangle = \frac{1}{2^{n/2}} \bigotimes_{l=1}^{n} (|0\rangle + e^{2\pi ij2^{-l}}|1\rangle)$$

$$= \frac{1}{2^{n/2}} \bigotimes_{l=1}^{k} (|0\rangle + e^{2\pi ij2^{-l}}|1\rangle) \otimes (|0\rangle + e^{2\pi i\phi_0,\phi_1,\ldots,\phi_{n-1}}|1\rangle)$$

$$= \frac{1}{2^{n/2}} \bigotimes_{l=1}^{k} (|0\rangle + e^{2\pi ij2^{-l}}|1\rangle) \otimes |\phi\rangle \otimes \cdots \otimes |\phi_{n-1}\rangle$$

where

$$|\phi_m\rangle = (|0\rangle + e^{2\pi i\phi_{m-1}}|1\rangle) / \sqrt{2}$$

Also, using (5.13)–(5.18), it can be seen that our approximation acts as a truncating operator with the following action

$$V|j\rangle = \frac{1}{2^{n/2}} \bigotimes_{l=1}^{k} (|0\rangle + e^{2\pi ij2^{-l}}|1\rangle) \otimes (|0\rangle + e^{2\pi i\nu_0,\nu_1,\ldots,\nu_{n-1}}|1\rangle)$$

$$= \frac{1}{2^{n/2}} \bigotimes_{l=1}^{k} (|0\rangle + e^{2\pi ij2^{-l}}|1\rangle) \otimes |\nu\rangle \otimes \cdots \otimes |\nu_{n-1}\rangle$$

where

$$|\nu_m\rangle = (|0\rangle + e^{2\pi i\nu_{m-1}}|1\rangle) / \sqrt{2}$$

Therefore, defining the error vector

$$|\psi\rangle = (U - V)|j\rangle$$
we have
\[
\|(U - V) | j \|_2^2 = \langle \psi_j | \psi_j \rangle = \prod_{m=k}^{n-1} \langle \phi_m | \phi_m \rangle + \prod_{m=k}^{n-1} \langle \nu_m | \nu_m \rangle - 2 \text{Re} \prod_{m=k}^{n-1} \langle \nu_m | \phi_m \rangle
\]

but
\[
\langle \nu_m | \phi_m \rangle = (1 + \exp(2\pi i 0.00 \cdots 0 j_{n-m+k} \cdots j_n)) / 2
\]

where there are \(k \) zeros in the above exponent. This term has a very small phase for large \(n \), and therefore

\[
\text{Re} \langle \nu_m | \phi_m \rangle \geq \text{Re}(1 + \exp(2\pi i / n^c)) / 2
\]
\[
\approx \left| 1 + e^{2\pi i / n^c} \right| / 2 \quad \text{for } n \text{ large}
\]
\[
= \cos(\pi / n^c)
\]
\[
\approx (1 - \pi^2 / n^{2c})
\]

For the product term, the phase of each argument is on the order of \(\pi / n^c \), therefore for \(c \geq 2 \), the phase of the product \(\prod_{m=k}^{n-1} \langle \nu_m | \phi_m \rangle \) is less than \(\pi / n \), and we can again approximate the real part by its magnitude to obtain:
\[
\|(U - V) | j \|_2^2 \approx 2 - 2(1 - \pi^2 / n^{2c})^{n-k}
\]
\[
\approx 2[1 - (1 - (n-k)^2 / n^{2c})]
\]
\[
\approx 2\pi^2 / n^{2c-1}
\]

which means that the error decreases inversely proportional to \(n^{c-1/2} \).

Problem 2. Problem 5.6 in Nielsen and Chuang. Show how to do addition using Fourier transform and phase shift.

Solution:

From Problem Set 5, Problem 3, for \(N = 2^n \), we have
\[
U_N^\dagger R_N U_N = T_N
\]

where
\[
T_N = \sum_{x=0}^{N-1} | x + 1 \text{ mod } N \rangle \langle x |
\]
is the addition operator for \(y = 1 \), and therefore
\[
(T_N)^y = U_N^\dagger R_N U_N U_N^\dagger R_N U_N \cdots U_N^\dagger R_N U_N = U_N^\dagger (R_N)^y U_N
\]
is the addition operator for any \(y \). \(U_N \) performs the quantum Fourier transform on \(n \) qubits, and

\[
(R_N)^y = \sum_{x=0}^{N-1} \exp(2\pi xyi / N) |x\rangle \langle x| \]

can be constructed using \(n \) single-qubit phase shifts, one for each input qubit. The circuit for the \(k \)th qubit is as follows:

\[
\begin{pmatrix}
1 & 0 \\
0 & e^{2\pi y_i / 2^k}
\end{pmatrix}
\]

which takes \(|x⟩ = |x_1⟩ \cdots |x_n⟩ \), for \(x = x_12^{n-1} + x_22^{n-2} + \cdots + x_n2^0 \), to \(\exp(2\pi xyi / N) |x⟩ \) as desired. So in order to construct \((T_N)^y = U_N^\dagger (R_N)^y U_N \), we need \(2(n^2 / 2 + 2n) \) operations for QFT and its inverse, and \(n \) operations for the phase shift, which results in \(n^2 + 5n \) operations.

Problem 3. In the Grover’s algorithm, what is the probability of success after only one iteration if we are using two qubits (there are 4 possibilities) and there is only one right answer to the search problem. For the two-qubit system, the Grover’s algorithm starts with \(|ψ⟩ = |+⟩ \otimes |+⟩ \), and, in each iteration, we perform \((2|ψ⟩⟨ψ| - I)O\), where \(O \) is the oracle operator that takes the right answer \(|y⟩ \) to \(-|y⟩\) and leaves other states unchanged. The final measurement is in the computational basis.

Solution:

Each iteration of the Grover’s algorithm rotates \(|ψ⟩ \) by \(2θ \), where \(θ = \sin^{-1}(\sqrt{M / N}) = \sin^{-1}(\sqrt{1 / 4}) = \pi / 6 \), in the subspace spanned by the right answer vector and the superposition of wrong answer vectors. Because the initial phase of \(|ψ⟩ \) in this plane is given by \(θ \), after one iteration this angle becomes \(θ + 2θ = π / 2 \), which is exactly what the right answer represents. Hence, we get the right answer with probability one.

Problem 4. For \(n = 2^k \), we can use the following circuit, recursively, to build an \(n \)-qubit-controlled \(U \) gate using only single-qubit-controlled \(U \) gates and Fredkin gates with reverse polarity. Explain how this circuit works, and find how many gates and work bits will be needed to construct the controlled \(U \) gate.
where the Fredkin gate with reverse polarity swaps the two input states if the control qubit is $|0\rangle$ and does nothing if it is $|1\rangle$.

Solution:

Let’s refer to the first $n/2$ input qubits by the first register, and use the second register for the second half. Then, in order to prove that the above circuit acts the same as an n-qubit-controlled gate, we need to show that the above circuit does nothing unless all input qubits are $|1\rangle$. We consider the following cases:

1- If any of the qubits in the first register is $|0\rangle$, then one of the Fredkin gates becomes active and swaps the work bit $|0\rangle$ and one of the input qubits in the second register. Therefore, one of the control qubits of the $n/2$-qubit-controlled gate will be $|0\rangle$, and the whole circuit does nothing.

2- If all of all the qubits in the first register are $|1\rangle$, then none of the Fredkin gates is active, and therefore, if any of the qubits in the second register is $|0\rangle$, the $n/2$-qubit-controlled gate does nothing, and so does the whole circuit.

3- If all input qubits are $|1\rangle$, then none of the Fredkin gates is active, and we have all $|1\rangle$ at the input of the $n/2$-qubit-controlled gate. Hence, the whole circuit behaves as an n-qubit-controlled gate.

Now that we know the given circuit is an n-qubit-controlled gate, we can use it again to construct the $n/2$-qubit-controlled gate using a single $n/4$-qubit-controlled gate, $n/2$ Fredkin gates, and one work qubit. We can continue this procedure until we get to a circuit with only one single-qubit-controlled gate. This circuit consists of $n + n/2 + \cdots + 2 = 2n - 2$ Fredkin gates, one single-qubit-controlled gate, and $k = \log n$ work qubits.