Problem 1. In NMR quantum computing, a Hadamard gate is implemented by rotating around the axis \((\vec{x} + \vec{z})/\sqrt{2}\). Compute the matrix obtained by rotation around this axis by \(\pi\) radians, and compare to a Hadamard gate.

Solution:

If we denote the rotation by angle \(\theta\) about \((\vec{x} + \vec{z})/\sqrt{2}\) by \(R(\theta)\), we have

\[
R(\theta) = \exp[-i(\theta/2)(\sigma_X + \sigma_Z)/\sqrt{2}]
= \cos\theta/2 I - i\sin\theta/2(\sigma_X + \sigma_Z)/\sqrt{2}
\]

\[\Rightarrow \quad R(\pi) = -i(\sigma_X + \sigma_Z)/\sqrt{2}
= \frac{-i}{\sqrt{2}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
= \frac{-i}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
= -iH
\]

where \(H\) is the Hadamard gate.

Problem 2. Let

\[
H = \frac{1}{2}(\sigma_X \otimes \sigma_X + \sigma_Y \otimes \sigma_Y + \sigma_Z \otimes \sigma_Z + I \otimes I)
\]

be an operator on two qubits.

a) Find \(H^2\) and write it in a simple form.

b) Using (a), find \(\exp(-i\pi H/4)\) and \(\exp(-i\pi H/2)\).

c) Find the eigenvalues of \(H\).

d) Find a set of orthonormal eigenstates of \(H\).
Solution:

a) We have

\[H^2 = \frac{1}{2} (\sigma_X \otimes \sigma_X + \sigma_Y \otimes \sigma_Y + \sigma_Z \otimes \sigma_Z + I \otimes I)H. \]

Note that

\[\frac{1}{2} (\sigma_X \otimes \sigma_X)H = \frac{1}{4} (\sigma_X \otimes \sigma_X)(\sigma_X \otimes \sigma_X + \sigma_Y \otimes \sigma_Y + \sigma_Z \otimes \sigma_Z + I \otimes I) \]

\[= \frac{1}{4} (\sigma_X \sigma_X \otimes \sigma_X \sigma_X + \sigma_X \sigma_Y \otimes \sigma_Y \sigma_Y + \sigma_X \sigma_Z \otimes \sigma_Z \sigma_Z + \sigma_X \otimes \sigma_X) \]

\[= \frac{1}{4} (I \otimes I + i\sigma_Z \otimes i\sigma_Z + (i)\sigma_Y \otimes (i)\sigma_Y + \sigma_X \otimes \sigma_X) \]

\[= \frac{1}{4} (I \otimes I - \sigma_Z \otimes \sigma_Z - \sigma_Y \otimes \sigma_Y + \sigma_X \otimes \sigma_X). \]

Similarly,

\[\frac{1}{2} (\sigma_Y \otimes \sigma_Y)H = \frac{1}{4} (-\sigma_X \otimes \sigma_X + \sigma_Y \otimes \sigma_Y - \sigma_Z \otimes \sigma_Z + I \otimes I) \]

\[\frac{1}{2} (\sigma_Z \otimes \sigma_Z)H = \frac{1}{4} (-\sigma_X \otimes \sigma_X - \sigma_Y \otimes \sigma_Y + \sigma_Z \otimes \sigma_Z + I \otimes I) \]

\[\frac{1}{2} (I \otimes I)H = \frac{H}{2}. \]

Adding up these four relations, one can obtain

\[H^2 = I \otimes I. \]

b) Using equation (4.7) of N&C, we have

\[\exp(i\theta H) = \cos(\theta)I \otimes I + i\sin(\theta)H \]

\[\Rightarrow \]

\[\exp(-i\pi H / 4) = \sqrt{2}I \otimes I / 2 - i\sqrt{2}H / 2 \]

and

\[\exp(-i\pi H / 2) = -iH. \]

c) Using Problem 1(b) in Problem Set 2, it can be seen that the only possible values for the eigenvalues are +1 and –1.

d) You can easily verify that the Bell states, described in the first problem of Problem Set 3, are one possible set of eigenstates. (In fact, \(H = I_{AB}^2 - I \otimes I \).) The first state in that problem, the singlet state, has eigenvalue –1 and the other three have eigenvalues +1.

Problem 3. Let \(N \) be an integer larger than 5. Consider the following state:
\[|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x \text{ mod } N \rangle_A \otimes |3x \text{ mod } N \rangle_B \otimes |5x \text{ mod } N \rangle_C . \]

Find the output state if we take a quantum Fourier transform modulus \(N \) on each of the registers \(A, B, \) and \(C \). That is, if we denote the corresponding QFT operators to each system by \(U_A, U_B, \) and \(U_C \), find \(U_A \otimes U_B \otimes U_C |\psi\rangle \). Write your answer in the basis \(\{|0\rangle, |1\rangle, \ldots, |N-1\rangle\}^3 \), and show that it is the superposition of equally probable states. What is this probability?

Solution:

\[
U_A \otimes U_B \otimes U_C |\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} U_A |x \text{ mod } N \rangle_A \otimes U_B |3x \text{ mod } N \rangle_B \otimes U_C |5x \text{ mod } N \rangle_C \\
= \left(\frac{1}{\sqrt{N}} \right)^3 \sum_{x=0}^{N-1} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{2\pi i (kA + 3mA + 5mA) / N} |k\rangle_A |m\rangle_B |n\rangle_C \\
= \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^{2\pi i (k + 3m + 5n) x / N} |k\rangle_A |m\rangle_B |n\rangle_C \\
= \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} |k\rangle_A |m\rangle_B |n\rangle_C \sum_{x=0}^{N-1} e^{2\pi i (k + 3m + 5n) x / N} \\
= \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} |k\rangle_A |m\rangle_B |n\rangle_C \sum_{x=0}^{N-1} e^{2\pi i (k + 3m + 5n) x / N} \\
= \frac{1}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} |k\rangle_A |m\rangle_B |n\rangle_C \sum_{x=0}^{N-1} e^{-3m - 5n \text{ mod } N} \\
= \frac{1}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} |k\rangle_A |m\rangle_B |n\rangle_C .
\]

This is the superposition of \(N^2 \) states each with probability of occurrence \(1 / N^2 \).