This lecture started with details about the homework 3:

Typo in Nielsen and Chuang: If you pick random x such that $\gcd(x, N) = 1$, $x < N$ and N is the product of m distinct primes raised to positive integral powers, and r is the order of $x \mod N$, then the probability that r is even and $x^{r/2} \not\equiv -1 \mod N \geq 1 - \frac{1}{2^{m-1}}$. The book erroneously has the power of 2 as m opposed to $m - 1$.

In exercise 5.20: The book states at the bottom of the problem that a certain sum has value $\sqrt{\frac{N}{R}}$ when l is a multiple of N/r. The answer should actually be N/r when l is a multiple of N/r.

Also, there will be a test on Thursday, October 23rd
- Open books
- Open notes
- In class
- Covers through Grover’s algorithm, teleportation, and superdense coding

From last lecture:
We know that quantum circuits can simulate Quantum Turing Machines (QTM) with polynomial overhead.

Now we will look in the reverse direction: implementing a Turing machine to simulate a quantum circuit.

We will need to show that we can approximate any gate with a finite set of gates.

Thm: CNOT gates and one-qubit gates are universal for quantum computation
Proof:

We already know gates of the form

\[
\begin{bmatrix}
\alpha & \beta \\
\gamma & \delta \\
1 & 1 \\
1 & 1
\end{bmatrix}
\]

are sufficient, where \(\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \) is a unitary matrix.

We know use the fact that:

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & \gamma & \delta & 1 \\
1 & 1 & 1 & \gamma \\
\end{bmatrix}
\]

This reduces the proof to only finding the first 2 of the 3 matrices above. The first 2, however, can be considered single-qubit operations. So if we can construct arbitrary single qubit operations, our proof is complete. We now look at forming controlled \(T^2 \) gates with

\[
T = \begin{bmatrix}
e^{i\phi_1} \\ e^{-i\phi_1}
\end{bmatrix}
\]
or

\[
T = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{bmatrix}
\]

We now know:

\[
\begin{bmatrix}
e^{i\phi_1} \\ e^{-i\phi_1}
\end{bmatrix}
\begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
e^{i\phi_2} \\ e^{-i\phi_2}
\end{bmatrix}
\]
give arbitrary determinant 1, unitary 2X2 matrices. Thus, our proof is complete.

We know suppose Alice and Bob share stat \((1/2) (|0000> + |0101> + |1011> + |1110>)\)
where Alice owns the first 2 qubits.
They can use this state to teleport Alice’s 2 qubits to Bob. To do this, Alice must send Bob 4 classical bits.

Quantum linear optics as a means for computation

- suppose you have a probabilistic method of applying CNOT gates and you know when it has worked
- you can measure in the Bell basis
- you can do single qubit operations
We argue that this strange set of requirements actually allows universal computation

We want
\[\sigma_1 \otimes \sigma_2 \rightarrow CNOT \quad \sigma_1^{-1} \otimes \sigma_2^{-1} |a,b\rangle = CNOT |a,b\rangle \]

We now want to know that for each \(a, b \) \{X, Y, Z, I\} there exists \(a', b' \) such that
\[\sigma_a \otimes \sigma_b \rightarrow CNOT \quad \sigma_a \otimes \sigma_b = CNOT \]

Knowing that the Pauli matrices are self inverses, we get:
\[CNOT \sigma_x |l\rangle CNOT = \sigma_x |l\rangle \otimes \sigma_x |l\rangle \]
\[CNOT \sigma_x |2\rangle CNOT = \sigma_x |2\rangle \]
\[CNOT \sigma_z |l\rangle CNOT = \sigma_z |l\rangle \]

Thus, we have:
\[CNOT \sigma_y |l\rangle CNOT = -i CNOT \sigma_z |l\rangle CNOT \]
\[CNOT \sigma_y |l\rangle CNOT = -i CNOT \sigma_z |l\rangle CNOT \]
\[CNOT \sigma_y |l\rangle CNOT = -i \sigma_z |l\rangle \sigma_x |2\rangle \]
\[CNOT \sigma_y |l\rangle CNOT = \sigma_y |l\rangle \sigma_x |2\rangle \]

We have shown that we can teleport through controlled not gates to use quantum linear optics as a means of quantum computation.

Adiabatic Quantum Computation

Physical systems have Hamiltonians \(H \) such that \(\langle \Psi | H | \Psi \rangle = E \) is the energy of the system.

\(H \) is a Hermitian operator.

The wave function satisfies the Schrödinger Equation:

\[i\hbar \frac{d}{dt} |\Psi\rangle = H |\Psi\rangle \]

Thm: If you change the Hamiltonian sufficiently slowly, and start in the ground state, you remain in the ground state.

Here, “sufficiently slow” means \(T \) is proportional to \(1/|g|^2 \), where \(g \) is the gap between first and second energy eigenvalues.
If we start in state H_{init} and end in H_{final}, $H_{\text{init}} / H_{\text{final}}$ are sums of Hamiltonians involving no more than a few qubits.

Finally, there is a theorem which states that using this setup can be equated to using quantum circuits.