18.440 PROBLEM SET SIX DUE APRIL 4

A. FROM TEXTBOOK CHAPTER FIVE:

1. Problem 23: One thousand independent rolls of a fair die will be made. Compute an approximation to the probability that the number 6 will appear between 150 and 200 times inclusively. If the number 6 appears exactly 200 times, find the probability that the number 5 will appear less than 150 times.

2. Problem 27: In 10,000 independent tosses of a coin, the coin lands on heads 5800 times. Is it reasonable to assume that the coin is not fair? Explain.

3. Problem 32: The time (in hours) required to repair a machine is an exponentially distributed random variable with parameter \(\lambda = 1/2 \). What is
 (a) the probability that a repair time exceeds 2 hours?
 (b) the conditional probability that a repair takes at least 10 hours, given that its duration exceeds 9 hours?

4. Theoretical Exercise 9: If \(X \) is an exponential random variable with parameter \(\lambda \), and \(c > 0 \), show that \(cX \) is exponential with parameter \(\lambda/c \).

5. Theoretical Exercise 21: Show that \(\Gamma(1/2) = \sqrt{\pi} \). Hint:
 \[\Gamma(1/2) = \int_0^\infty e^{-x}x^{-1/2}dx \]
 Make the change of variables \(y = \sqrt{2x} \) and then relate the resulting expression to the normal distribution.

6. Theoretical Exercise 29: Let \(X \) be a continuous random variable having cumulative distribution function \(F \). Define the random variable \(Y \) by \(Y = F(X) \). Show that \(Y \) is uniformly distributed over \((0, 1)\).

7. Theoretical Exercise 30: Let \(X \) have probability density \(f_X \). Find the probability density function of the random variable \(Y \) defined by \(Y = aX + b \).

B. At time zero, a single bacterium in a dish divides into two bacteria. This species of bacteria has the following property: after a bacterium \(B \) divides into two new bacteria \(B_1 \) and \(B_2 \), the subsequent length of time until each \(B_i \) divides is an exponential random variable of rate \(\lambda = 1 \), independently of everything else happening in the dish.
1. Compute the expectation of the time T_n at which the number of bacteria reaches n.

2. Compute the variance of T_n.

3. Are both of the answers above unbounded, as functions of n? Give a rough numerical estimate of the values when $n = 10^{50}$.