18.440 Final Exam: 100 points
Carefully and clearly show your work on each problem (without writing anything that is technically not true) and put a box around each of your final computations.
1. (10 points) Let X be the number on a standard die roll (i.e., each of \{1, 2, 3, 4, 5, 6\} is equally likely) and Y the number on an independent standard die roll. Write $Z = X + Y$.

2. Compute the conditional expectation $E[Z | Y]$ as a function of Y.
2. (10 points) Janet is standing outside at time zero when it starts to drizzle. The times at which raindrops hit her are a Poisson point process with parameter $\lambda = 2$. In expectation, she is hit by 2 raindrops in each given second.

(a) What is the expected amount of time until she is first hit by a raindrop?

(b) What is the probability that she is hit by exactly 4 raindrops during the first 2 seconds of time?
3. (10 points) Let X be a random variable with density function f, cumulative distribution function F, variance V and mean M.

(a) Compute the mean and variance of $3X + 3$ in terms of V and M.

(b) If X_1, \ldots, X_n are independent copies of X. Compute (in terms of F) the cumulative distribution function for the largest of the X_i.

4. (10 points) Suppose that X_i are i.i.d. random variables, each uniform on $[0, 1]$. Compute the moment generating function for the sum $\sum_{i=1}^n X_i$.

5. (10 points) Suppose that X and Y are outcomes of independent standard die rolls (each equal to \{1, 2, 3, 4, 5, 6\} with equal probability). Write $Z = X + Y$.

(a) Compute the entropies $H(X)$ and $H(Y)$.

(b) Compute $H(X, Z)$.

(c) Compute $H(10X + Y)$.

(d) Compute $H(Z) + H_Z(Y)$. (Hint: you shouldn’t need to do any more calculations.)
6. (10 points) Elaine’s not-so-trusty old car has three states: broken (in Elaine’s possession), working (in Elaine’s possession), and in the shop. Denote these states B, W, and S.

(i) Each morning the car starts out B, it has a .5 chance of staying B and a .5 chance of switching to S by the next morning.

(ii) Each morning the car starts out W, it has .5 chance of staying W, and a .5 chance of switching to B by the next morning.

(iii) Each morning the car starts out S, it has .5 chance of staying S and a .5 chance of switching to W by the next morning.

Answer the following

(a) Write the three-by-three Markov transition matrix for this problem.

(b) If the car starts out B on one morning, what is the probability that it will start out B two days later?

(c) Over the long term, what fraction of mornings does the car start out in each of the three states, B, S, and W?
7. Suppose that X_1, X_2, X_3, \ldots is an infinite sequence of independent random variables which are each equal to 2 with probability $1/3$ and 0.5 with probability $2/3$. Let $Y_0 = 1$ and $Y_n = \prod_{i=1}^{n} X_i$ for $n \geq 1$.

(a) What is the probability that Y_n reaches 8 before the first time that it reaches $\frac{1}{8}$?

(b) Find the mean and variance of $\log Y_{10000}$.

(c) Use the central limit theorem to approximate the probability that $\log Y_{10000}$ (and hence Y_{10000}) is greater than its median value.
8. (10 points) Eight people toss their hats into a bin and the hats are redistributed, with all of the 8! hat permutations being equally likely. Let \(N \) be the number of people who get their own hat. Compute the following:

(a) \(\mathbb{E}[N] \)

(b) \(\text{Var}[N] \)
9. (10 points) Let X be a normal random variable with mean μ and variance σ^2.

(a) Ee^X.

(b) Find μ, assuming that $\sigma^2 = 3$ and $E[e^X] = 1$.
10. (10 points)

1. Let X_1, X_2, \ldots be independent random variables, each equal to 1 with probability $1/2$ and -1 with probability $1/2$. In which of the cases below is the sequence Y_n a martingale? (Just circle the corresponding letters.)

(a) $Y_n = X_n$
(b) $Y_n = 1 + X_n$
(c) $Y_n = 7$
(d) $Y_n = \sum_{i=1}^{n} iX_i$
(e) $Y_n = \prod_{i=1}^{n} (1 + X_i)$

2. Let $Y_n = \sum_{i=1}^{n} X_i$. Which of the following is necessarily a stopping time for Y_n?

(a) The smallest n for which $|Y_n| = 5$.
(b) The largest n for which $Y_n = 12$ and $n < 100$.
(c) The smallest value n for which $n > 100$ and $Y_n = 12$.