18.445 Introduction to Stochastic Processes
Lecture 17: Martingle: a.s convergence and L^p-convergence

Hao Wu
MIT
15 April 2015
Recall

- Martingale: $\mathbb{E}[X_n | \mathcal{F}_m] = X_m$ for $n \geq m$.
- Optional Stopping Theorem: $\mathbb{E}[X_T] = \mathbb{E}[X_0]$?

Today’s goal

- a.s.martingale convergence
- Doob’s maximal inequality
- convergence in L^p for $p > 1$
Various convergences

Spaces
- L^1 space: $\mathbb{E}[|X|] < \infty$.
 - L^1-norm: $||X||_1 = \mathbb{E}[|X|]$.
 - triangle inequality: $||X + Y||_1 \leq ||X||_1 + ||Y||_1$.
- L^p space for $p > 1$: $\mathbb{E}[|X|^p] < \infty$
 - L^p-norm: $||X||_p = \mathbb{E}[|X|^p]^{1/p}$.
 - triangle inequality: $||X + Y||_p \leq ||X||_p + ||Y||_p$.

Lemma

For $p > 1$, L^p is contained in L^1.

different notions of convergence
- almost sure convergence: $X_n \rightarrow X_\infty$ a.s.
- convergence in L^p: $X_n \rightarrow X_\infty$ in L^p.
- convergence in L^1: $X_n \rightarrow X_\infty$ in L^1.
A.S. Martingale Convergence

Theorem

Let $X = (X_n)_{n \geq 0}$ be a supermartingale which is bounded in L^1, i.e.

$$\sup_n \mathbb{E}[|X_n|] < \infty.$$

Then

$$X_n \to X_\infty, \quad \text{almost surely, as} \quad n \to \infty,$$

for some $X_\infty \in L^1$.

Proof Attached on the website.

Corollary

Let $X = (X_n)_{n \geq 0}$ be a non-negative supermartingale. Then X_n converges a.s. to some a.s. finite limit.
Examples

Example 1 Let \((\xi_j)_{j \geq 1}\) be independent random variables with mean zero such that \(\sum_{j=1}^{\infty} \mathbb{E}[|\xi_j|] < \infty\). Set

\[X_0 = 0, \quad X_n = \sum_{j=1}^{n} \xi_j. \]

- \((X_n)_{n \geq 0}\) is a martingale bounded in \(L^1\).
- \(X_n\) converges a.s. to \(X_\infty = \sum_{j=1}^{\infty} \xi_j\).
- In fact, \(X_n\) also converges to \(X_\infty\) in \(L^1\).

Example 2 Let \((\xi_j)_{j \geq 1}\) be non-negative independent random variables with mean one. Set

\[X_0 = 1, \quad X_n = \prod_{j=1}^{n} \xi_j. \]

- \((X_n)_{n \geq 0}\) is a non-negative martingale.
- \(X_n\) converges a.s. to some limit \(X_\infty \in L^1\).
Question

Suppose that a martingale X is bounded in L^1, then we have the a.s. convergence.

Question : Do we have $\mathbb{E}[X_\infty] = \mathbb{E}[X_0]$?

Answer : It is true when we have convergence in L^1.

- Convergence in L^p for $p > 1$ implies convergence in L^1. (Today)
- Convergence in L^1. (Next lecture)
Doob’s maximal inequality

Theorem

Let \(X = (X_n)_{n \geq 0} \) be a non-negative submartingale. Define \(X^*_n = \max_{0 \leq k \leq n} X_k \). Then

\[
\lambda \mathbb{P}[X^*_n \geq \lambda] \leq \mathbb{E}[X_n 1[X^*_n \geq \lambda]] \leq \mathbb{E}[X_n].
\]

Theorem

Let \(X = (X_n)_{n \geq 0} \) be a non-negative submartingale. Define \(X^*_n = \max_{0 \leq k \leq n} X_k \). Then, for all \(p > 1 \), we have

\[
\|X^*_n\|_p \leq \frac{p}{p - 1} \|X_n\|_p.
\]

Recall Hölder inequality: \(p > 1, q > 1 \) and \(1/p + 1/q = 1 \), then

\[
\mathbb{E}[|XY|] \leq \mathbb{E}[|X|^p]^{1/p} \times \mathbb{E}[|Y|^q]^{1/q}.
\]
Theorem

Let $X = (X_n)_{n \geq 0}$ be a martingale and $p > 1$, then the following statements are equivalent.

1. X is bounded in L^p: $\sup_{n \geq 0} \|X_n\|_p < \infty$
2. X converges a.s and in L^p to a random variable X_∞.
3. There exists a random variable $Z \in L^p$ such that
 \[X_n = \mathbb{E}[Z | \mathcal{F}_n] \quad \text{a.s.} \]

Corollary

Let $Z \in L^p$. Then

\[\mathbb{E}[Z | \mathcal{F}_n] \to \mathbb{E}[Z | \mathcal{F}_\infty], \quad \text{a.s. and in } L^p. \]
Example

Let \((\xi_j)_{j \geq 1}\) be independent random variables with mean zero such that
\[
\sum_{j=1}^{\infty} \mathbb{E}[\xi_j^2] < \infty.
\]
Set
\[
X_0 = 0, \quad X_n = \sum_{j=1}^{n} \xi_j.
\]

- \((X_n)_{n \geq 0}\) is a martingale bounded in \(L^2\).
- \(X_n\) converges to \(X_\infty = \sum_{j=1}^{\infty} \xi_j\) a.s. and in \(L^2\).
- \(\mathbb{E}[X_\infty^2] = \sum_{j=1}^{\infty} \mathbb{E}[\xi_j^2]\).
Example

Let \((\xi_j)_{j \geq 1}\) be non-negative independent random variables with mean one. Set

\[X_0 = 1, \quad X_n = \prod_{j=1}^{n} \xi_j.\]

1. \((X_n)_{n \geq 0}\) is a non-negative martingale.
2. \(X_n\) converges a.s. to some limit \(X_\infty \in L^1\).

Question:

1. Do we have \(\mathbb{E}[X_\infty] = 1\) ?

Answer: Set \(a_j = \mathbb{E}[\sqrt{\xi_j}] \in (0, 1]\).

1. If \(\prod_j a_j > 0\), then \(X\) converges in \(L^1\) and \(\mathbb{E}[X_\infty] = 1\). (Next lecture)
2. If \(\prod_j a_j = 0\), then \(X_\infty = 0\) a.s.
18.445 Introduction to Stochastic Processes
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.