Assume \(f \in \mathcal{F} = \{ f : \mathcal{X} \rightarrow \mathbb{R} \} \) and \(x_1, \ldots, x_n \) are i.i.d. Denote \(\mathbb{P}_n f = \frac{1}{n} \sum_{i=1}^{n} f(x_i) \) and \(\mathbb{P} f = \int f d\mathbb{P} = \mathbb{E} f. \)

We are interested in bounding \(\frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E} f. \)

Worst-case scenario is the value

\[
\sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P} f|.
\]

The Glivenko-Cantelli property \(GC(\mathcal{F}, \mathbb{P}) \) says that

\[
\mathbb{E} \sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P} f| \rightarrow 0
\]
as \(n \to \infty. \)

- Algorithm can output any \(f \in \mathcal{F} \)
- Objective is determined by \(\mathbb{P}_n f \) (on the data)
- Goal is \(\mathbb{P} f \)
- Distribution \(\mathbb{P} \) is unknown

The most pessimistic requirement is

\[
\sup_{\mathbb{P}} \mathbb{E} \sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P} f| \rightarrow 0
\]
which we denote

\[
\text{uniform} GC(\mathcal{F}).
\]

VC classes of sets

Let \(\mathcal{C} = \{ C \subseteq \mathcal{X} \}, f_C(x) = I(x \in C) \). The most pessimistic value is

\[
\sup_{\mathbb{P}} \mathbb{E} \sup_{C \in \mathcal{C}} |\mathbb{P}_n (C) - \mathbb{P} (C)| \rightarrow 0.
\]

For any sample \(\{x_1, \ldots, x_n\} \), we can look at the ways that \(\mathcal{C} \) intersects with the sample:

\[
\{ C \cap \{x_1, \ldots, x_n\} : C \in \mathcal{C} \}.
\]

Let

\[
\Delta_n(\mathcal{C}, x_1, \ldots, x_n) = \text{card} \{ C \cap \{x_1, \ldots, x_n\} : C \in \mathcal{C} \},
\]

the number of different subsets picked out by \(C \in \mathcal{C} \). Note that this number is at most \(2^n \).

Denote

\[
\Delta_n(\mathcal{C}) = \sup_{\{x_1, \ldots, x_n\}} \Delta_n(\mathcal{C}, x_1, \ldots, x_n) \leq 2^n.
\]

We will see that for some classes, \(\Delta_n(\mathcal{C}) = 2^n \) for \(n \leq V \) and \(\Delta_n(\mathcal{C}) < 2^n \) for \(n > V \) for some constant \(V \).

What if \(\Delta_n(\mathcal{C}) = 2^n \) for all \(n \geq 1 \)? That means we can always find \(\{x_1, \ldots, x_n\} \) such that \(C \in \mathcal{C} \) can pick out any subset of it: "\(C \text{ shatters} \{x_1, \ldots, x_n\} \). In some sense, we do not learn anything.

Definition 8.1. If \(V < \infty \), then \(\mathcal{C} \) is called a VC class. \(V \) is called VC dimension of \(\mathcal{C} \).

Sauer’s lemma states the following:
Lemma 8.2.
\[\forall \{x_1, \ldots, x_n\}, \quad \Delta_n(C, x_1, \ldots, x_n) \leq \left(\frac{en}{V} \right)^V \text{ for } n \geq V. \]

Hence, \(C \) will pick out only very few subsets out of \(2^n \) (because \(\left(\frac{en}{V} \right)^V \sim n^V \)).

Lemma 8.3. The number \(\Delta_n(C, x_1, \ldots, x_n) \) of subsets picked out by \(C \) is bounded by the number of subsets shattered by \(C \).

Proof. Without loss of generality, we restrict \(C \) to \(C := \{ C \cap \{x_1, \ldots, x_n\} : C \in C \} \), and we have \(\text{card}(C) = \Delta_n(C, x_1, \ldots, x_n) \).

We will say that \(C \) is hereditary if and only if whenever \(B \subseteq C \in C, B \subseteq C \). If \(C \) is hereditary, then every \(C \in C \) is shattered by \(C \), and the lemma is obvious. Otherwise, we will transform \(C \to C' \), hereditary, without changing the cardinality of \(C \) and without increasing the number of shattered subsets.

Define the operators \(T_i \) for \(i = 1, \ldots, n \) as the following,

\[T_i(C) = \begin{cases} C - \{x_i\} & \text{if } C - \{x_i\} \text{ is not in } C \\ C & \text{otherwise} \end{cases} \]

\[T_i(C) = \{ T_i(C) : C \in C \}. \]

It follows that \(\text{card} T_i(C) = \text{card} C \). Moreover, every \(A \subseteq \{x_1, \ldots, x_n\} \) that is shattered by \(T_i(C) \) is also shattered by \(C \). If \(x_i \notin A \), then \(\forall C \in C, A \cap C = A \cap T_i(C) \), thus \(C \) and \(T_i(C) \) both or neither shatter \(A \). On the other hand, if \(x_i \in A \) and \(A \) is shattered by \(T_i(C) \), then \(\forall B \subseteq A, \exists C \in C, \text{ such that } B \cap \{x_i\} = A \cap T_i(C) \). This means that \(x_i \in T_i(C) \), and that \(C \setminus \{x_i\} \in C \). Thus both \(B \cup \{x_i\} \) and \(B \setminus \{x_i\} \) are picked out by \(C \).

Since either \(B = B \cup \{x_i\} \) or \(B = B \setminus \{x_i\} \), \(B \) is picked out by \(C \). Thus \(A \) is shattered by \(C \).

Apply the operator \(T = T_1 \circ \ldots \circ T_n \) until \(T^{k+1}(C) = T^k(C) \). This will happen for at most \(\sum_{C \in C} \text{card}(C) \) times, since \(\sum_{C \in C} \text{card}(T_i(C)) < \sum_{C \in C} \text{card}(C) \) if \(T_i(C) \neq C \). The resulting collection \(C' \) is hereditary. This proves the lemma. \(\square \)

Sauer’s lemma is proved, since for arbitrary \(\{x_1, \ldots, x_n\} \),

\[\Delta_n(C, x_1, \ldots, x_n) \leq \text{card (shattered subsets of } \{x_1, \ldots, x_n\} \text{)} \]

\[\leq \text{card (subsets of size } \leq V \text{)} \]

\[= \sum_{i=0}^{V} \binom{n}{i} \]

\[\leq \left(\frac{en}{V} \right)^V. \]