18.600: Lecture 34
Martingales and the optional stopping theorem

Scott Sheffield

MIT
Outline

Martingales and stopping times

Optional stopping theorem
Martingales and stopping times

Optional stopping theorem
Let X_0, X_1, X_2, \ldots be a sequence of random variables. Informally, we will imagine that we are acquiring information about S in a sequence of stages, and each X_j represents a quantity that is known to us at the jth stage.

If Z is any random variable, we let $E[Z|F_n]$ denote the conditional expectation of Z given all the information that is available to us on the nth stage. If we don’t specify otherwise, we assume that this information consists precisely of the values X_0, X_1, \ldots, X_n, so that $E[Z|F_n] = E[Z|X_0, X_1, \ldots, X_n]$.

(In some applications, one could imagine there are other things known as well at stage n.)

We say the sequence is a martingale if $E|X_n| < \infty$ for all n and $E[X_{n+1}|F_n] = X_n$ for all n.

Taking into account all the information I have at stage n, the expected value at stage $n+1$ is the value at stage n.

Martingale definition

Let S be a probability space.
If Z is any random variable, we let $E[Z|F_n]$ denote the conditional expectation of X given all the information that is available to us on the nth stage. If we don’t specify otherwise, we assume that this information consists precisely of the values X_0, X_1, \ldots, X_n, so that $E[Z|F_n] = E[Z|X_0, X_1, \ldots, X_n]$.

(In some applications, one could imagine there are other things known as well at stage n.)

We say X is a martingale if $E[|X_n|] < \infty$ for all n and $E[X_{n+1}|F_n] = X_n$ for all n.

Taking into account all the information I have at stage n, the expected value at stage $n+1$ is the value at stage n."

Martingale definition

- Let S be a probability space.
- Let X_0, X_1, X_2, \ldots be a sequence of random variables. Informally, we will imagine that we acquiring information about S in a sequence of stages, and each X_j represents a quantity that is known to us at the jth stage.
Martingale definition

- Let S be a probability space.
- Let X_0, X_1, X_2, \ldots be a sequence of random variables. Informally, we will imagine that we acquiring information about S in a sequence of stages, and each X_j represents a quantity that is known to us at the jth stage.
- If Z is any random variable, we let $E[Z|\mathcal{F}_n]$ denote the conditional expectation of X given all the information that is available to us on the nth stage. If we don't specify otherwise, we assume that this information consists precisely of the values X_0, X_1, \ldots, X_n, so that $E[Z|\mathcal{F}_n] = E[Z|X_0, X_1, \ldots, X_n]$. (In some applications, one could imagine there are other things known as well at stage n.)
Let S be a probability space.

Let X_0, X_1, X_2, \ldots be a sequence of random variables. Informally, we will imagine that we acquiring information about S in a sequence of stages, and each X_j represents a quantity that is known to us at the jth stage.

If Z is any random variable, we let $E[Z|\mathcal{F}_n]$ denote the conditional expectation of X given all the information that is available to us on the nth stage. If we don’t specify otherwise, we assume that this information consists precisely of the values X_0, X_1, \ldots, X_n, so that $E[Z|\mathcal{F}_n] = E[Z|X_0, X_1, \ldots, X_n]$.

(In some applications, one could imagine there are other things known as well at stage n.)

We say X_n sequence is a **martingale** if $E[|X_n|] < \infty$ for all n and $E[X_{n+1}|\mathcal{F}_n] = X_n$ for all n.
Martingale definition

- Let S be a probability space.
- Let X_0, X_1, X_2, \ldots be a sequence of random variables. Informally, we will imagine that we acquiring information about S in a sequence of stages, and each X_j represents a quantity that is known to us at the jth stage.
- If Z is any random variable, we let $E[Z|\mathcal{F}_n]$ denote the conditional expectation of X given all the information that is available to us on the nth stage. If we don’t specify otherwise, we assume that this information consists precisely of the values X_0, X_1, \ldots, X_n, so that $E[Z|\mathcal{F}_n] = E[Z|X_0, X_1, \ldots, X_n]$. (In some applications, one could imagine there are other things known as well at stage n.)
- We say X_n sequence is a martingale if $E[|X_n|] < \infty$ for all n and $E[X_{n+1}|\mathcal{F}_n] = X_n$ for all n.
- “Taking into account all the information I have at stage n, the expected value at stage $n+1$ is the value at stage n.”
Example: Imagine that X_n is the price of a stock on day n.
Example: Imagine that X_n is the price of a stock on day n.

Martingale condition: “Expected value of stock tomorrow, given all I know today, is value of the stock today.”
Example: Imagine that X_n is the price of a stock on day n.

Martingale condition: “Expected value of stock tomorrow, given all I know today, is value of the stock today.”

Question: If you are given a mathematical description of a process X_0, X_1, X_2, \ldots then how can you check whether it is a martingale?
Example: Imagine that X_n is the price of a stock on day n.

Martingale condition: “Expected value of stock tomorrow, given all I know today, is value of the stock today.”

Question: If you are given a mathematical description of a process X_0, X_1, X_2, \ldots then how can you check whether it is a martingale?

Consider all of the information that you know after having seen X_0, X_1, \ldots, X_n. Then try to figure out what additional (not yet known) randomness is involved in determining X_{n+1}. Use this to figure out the conditional expectation of X_{n+1}, and check to see whether this is necessarily equal to the known X_n value.
Let \(X_0 = 0 \) and \(X_n = P \sum_{i=1}^n A_i \) for \(n > 0 \). Is the \(X_n \) sequence a martingale?

Answer: yes. To see this, note that

\[
E[X_{n+1} | F_n] = E[X_n + A_{n+1} | F_n] = E[X_n | F_n] + E[A_{n+1} | F_n],
\]

by additivity of conditional expectation (given \(F_n \)).

Since \(X_n \) is known at stage \(n \), we have

\[
E[X_n | F_n] = X_n.
\]

Since we know nothing more about \(A_{n+1} \) at stage \(n \) than we originally knew, we have

\[
E[A_{n+1} | F_n] = 0.
\]

Thus

\[
E[X_{n+1} | F_n] = X_n.
\]

Informally, I'm just tossing a new fair coin at each stage to see if \(X_n \) goes up or down one step. If I know the information available up to stage \(n \), and I know \(X_n = 10 \), then I see \(X_{n+1} = 11 \) and \(X_{n+1} = 9 \) as equally likely, so

\[
E[X_{n+1} | F_n] = 10 = X_n.
\]

Martingale examples

- Suppose that \(A_1, A_2, \ldots \) are i.i.d. random variables each equal to \(-1\) with probability .5 and 1 with probability .5.
Suppose that A_1, A_2, \ldots are i.i.d. random variables each equal to -1 with probability 0.5 and 1 with probability 0.5.

Let $X_0 = 0$ and $X_n = \sum_{i=1}^{n} A_i$ for $n > 0$. Is the X_n sequence a martingale?
Since X_n is known at stage n, we have $E[X_n|F_n] = X_n$. Since we know nothing more about A_{n+1} at stage n than we originally knew, we have $E[A_{n+1}|F_n] = 0$. Thus $E[X_{n+1}|F_n] = X_n$.

Informally, I’m just tossing a new fair coin at each stage to see if X_n goes up or down one step. If I know the information available up to stage n, and I know $X_n = 10$, then I see $X_{n+1} = 11$ and $X_{n+1} = 9$ as equally likely, so $E[X_{n+1}|F_n] = 10 = X_n$.

Martingale examples

Suppose that A_1, A_2, \ldots are i.i.d. random variables each equal to -1 with probability .5 and 1 with probability .5.

Let $X_0 = 0$ and $X_n = \sum_{i=1}^{n} A_i$ for $n > 0$. Is the X_n sequence a martingale?

Answer: yes. To see this, note that

$$E[X_{n+1}|\mathcal{F}_n] = E[X_n + A_{n+1}|\mathcal{F}_n] = E[X_n|\mathcal{F}_n] + E[A_{n+1}|\mathcal{F}_n],$$

by additivity of conditional expectation (given \mathcal{F}_n).
Martingale examples

- Suppose that A_1, A_2, \ldots are i.i.d. random variables each equal to -1 with probability 0.5 and 1 with probability 0.5.
- Let $X_0 = 0$ and $X_n = \sum_{i=1}^{n} A_i$ for $n > 0$. Is the X_n sequence a martingale?
- Answer: yes. To see this, note that
 \[E[X_{n+1}|\mathcal{F}_n] = E[X_n + A_{n+1}|\mathcal{F}_n] = E[X_n|\mathcal{F}_n] + E[A_{n+1}|\mathcal{F}_n], \]
 by additivity of conditional expectation (given \mathcal{F}_n).
- Since X_n is known at stage n, we have $E[X_n|\mathcal{F}_n] = X_n$. Since we know nothing more about A_{n+1} at stage n than we originally knew, we have $E[A_{n+1}|\mathcal{F}_n] = 0$. Thus $E[X_{n+1}|\mathcal{F}_n] = X_n$.

16
Martingale examples

- Suppose that A_1, A_2, \ldots are i.i.d. random variables each equal to -1 with probability $.5$ and 1 with probability $.5$.

- Let $X_0 = 0$ and $X_n = \sum_{i=1}^{n} A_i$ for $n > 0$. Is the X_n sequence a martingale?

- Answer: yes. To see this, note that
 \[E[X_{n+1}|\mathcal{F}_n] = E[X_n + A_{n+1}|\mathcal{F}_n] = E[X_n|\mathcal{F}_n] + E[A_{n+1}|\mathcal{F}_n], \]
 by additivity of conditional expectation (given \mathcal{F}_n).

- Since X_n is known at stage n, we have $E[X_n|\mathcal{F}_n] = X_n$. Since we know nothing more about A_{n+1} at stage n than we originally knew, we have $E[A_{n+1}|\mathcal{F}_n] = 0$. Thus
 \[E[X_{n+1}|\mathcal{F}_n] = X_n. \]

- Informally, I’m just tossing a new fair coin at each stage to see if X_n goes up or down one step. If I know the information available up to stage n, and I know $X_n = 10$, then I see $X_{n+1} = 11$ and $X_{n+1} = 9$ as\(^7\) equally likely, so
 \[E[X_{n+1}|\mathcal{F}_n] = 10 = X_n. \]
Another martingale example

- What if each A_i is 1.01 with probability .5 and .99 with probability .5 and we write $X_0 = 1$ and $X_n = \prod_{i=1}^n A_i$ for $n > 0$? Then is X_n a martingale?
What if each A_i is 1.01 with probability .5 and .99 with probability .5 and we write $X_0 = 1$ and $X_n = \prod_{i=1}^n A_i$ for $n > 0$? Then is X_n a martingale?

Answer: yes. Note that $E[X_{n+1}|\mathcal{F}_n] = E[A_{n+1}X_n|\mathcal{F}_n]$. At stage n, the value X_n is known, and hence can be treated as a known constant, which can be factored out of the expectation, i.e., $E[A_{n+1}X_n|\mathcal{F}_n] = X_n E[A_{n+1}|\mathcal{F}_n]$.

Another martingale example
Since I know nothing new about A_{n+1} at stage n, we have

$$E[A_{n+1}|F_n] = E[A_{n+1}] = 1.$$

Hence

$$E[A_{n+1}X_n|F_n] = X_n.$$

Informally, I’m just tossing a new fair coin at each stage to see if X_n goes up or down by a percentage point of its current value. If I know all the information available up to stage n, and I know $X_n = 5$, then I see $X_{n+1} = 5.05$ and $X_{n+1} = 4.95$ as equally likely, so $E[X_{n+1}|F_n] = 5$.

Two classic martingale examples:

- Sums of independent random variables (each with mean zero).
- Products of independent random variables (each with mean one).

Another martingale example

What if each A_i is 1.01 with probability .5 and .99 with probability .5 and we write $X_0 = 1$ and $X_n = \prod_{i=1}^{n} A_i$ for $n > 0$? Then is X_n a martingale?

Answer: yes. Note that $E[X_{n+1}|\mathcal{F}_n] = E[A_{n+1}X_n|\mathcal{F}_n]$. At stage n, the value X_n is known, and hence can be treated as a known constant, which can be factored out of the expectation, i.e., $E[A_{n+1}X_n|\mathcal{F}_n] = X_n E[A_{n+1}|\mathcal{F}_n]$.
What if each A_i is 1.01 with probability .5 and .99 with probability .5 and we write $X_0 = 1$ and $X_n = \prod_{i=1}^{n} A_i$ for $n > 0$? Then is X_n a martingale?

Answer: yes. Note that $E[X_{n+1}|\mathcal{F}_n] = E[A_{n+1}X_n|\mathcal{F}_n]$. At stage n, the value X_n is known, and hence can be treated as a known constant, which can be factored out of the expectation, i.e., $E[A_{n+1}X_n|\mathcal{F}_n] = X_nE[A_{n+1}|\mathcal{F}_n]$.

Since I know nothing new about A_{n+1} at stage n, we have $E[A_{n+1}|\mathcal{F}_n] = E[A_{n+1}] = 1$. Hence $E[A_{n+1}X_n|\mathcal{F}_n] = X_n$.

21
Another martingale example

- What if each A_i is 1.01 with probability .5 and .99 with probability .5 and we write $X_0 = 1$ and $X_n = \prod_{i=1}^{n} A_i$ for $n > 0$? Then is X_n a martingale?

 - Answer: yes. Note that $E[X_{n+1}|F_n] = E[A_{n+1}X_n|F_n]$. At stage n, the value X_n is known, and hence can be treated as a known constant, which can be factored out of the expectation, i.e., $E[A_{n+1}X_n|F_n] = X_nE[A_{n+1}|F_n]$.

 - Since I know nothing new about A_{n+1} at stage n, we have $E[A_{n+1}|F_n] = E[A_{n+1}] = 1$. Hence $E[A_{n+1}X_n|F_n] = X_n$.

 - Informally, I’m just tossing a new fair coin at each stage to see if X_n goes up or down by a percentage point of its current value. If I know all the information available up to stage n, and I know $X_n = 5$, then I see $X_{n+1} = 5.05$ and $X_{n+1} = 4.95$ as equally likely, so $E[X_{n+1}|F_n] = 5$.

22
Another martingale example

- What if each A_i is 1.01 with probability .5 and .99 with probability .5 and we write $X_0 = 1$ and $X_n = \prod_{i=1}^{n} A_i$ for $n > 0$? Then is X_n a martingale?
- Answer: yes. Note that $E[X_{n+1}|\mathcal{F}_n] = E[A_{n+1}X_n|\mathcal{F}_n]$. At stage n, the value X_n is known, and hence can be treated as a known constant, which can be factored out of the expectation, i.e., $E[A_{n+1}X_n|\mathcal{F}_n] = X_nE[A_{n+1}|\mathcal{F}_n]$.
- Since I know nothing new about A_{n+1} at stage n, we have $E[A_{n+1}|\mathcal{F}_n] = E[A_{n+1}] = 1$. Hence $E[A_{n+1}X_n|\mathcal{F}_n] = X_n$.
- Informally, I’m just tossing a new fair coin at each stage to see if X_n goes up or down by a percentage point of its current value. If I know all the information available up to stage n, and I know $X_n = 5$, then I see $X_{n+1} = 5.05$ and $X_{n+1} = 4.95$ as equally likely, so $E[X_{n+1}|\mathcal{F}_n] = 5$.
- **Two classic martingale examples**: sums of independent random variables (each with mean zero) and products of independent random variables (each with mean one).
I What is \(E[X_n] \), as a function of \(n \)?

I \(E[X_n] = 0 \) for all \(n \).

I Does this mean that \(X_n \) is a martingale?

I No. If \(n \geq 1 \), then given the information available up to stage \(n \), I can figure out what \(A \) must be, and can hence deduce exactly what \(X_{n+1} \) will be — and it is not the same as \(X_n \). In particular, \(E[X_{n+1} | F_n] = -X_n \).

I Informally, \(X_n \) alternates between 1 and \(-1\). Each time it goes up and hits 1, I know it will go back down to \(-1\) on the next step.

Another example

- Suppose \(A \) is 1 with probability .5 and \(-1\) with probability .5. Let \(X_0 = 0 \) and write \(X_n = (-1)^n A \) for all \(n > 0 \).
Another example

- Suppose A is 1 with probability 0.5 and -1 with probability 0.5. Let $X_0 = 0$ and write $X_n = (-1)^n A$ for all $n > 0$.
- What is $E[X_n]$, as a function of n?
I Does this mean that X_n is a martingale?

I No. If $n \geq 1$, then given the information available up to stage n, I can figure out what A must be, and can hence deduce exactly what X_{n+1} will be — and it is not the same as X_n. In particular, $E[X_{n+1} | F_n] = -X_n$.

I Informally, X_n alternates between 1 and -1. Each time it goes up and hits 1, I know it will go back down to -1 on the next step.

Another example

- Suppose A is 1 with probability .5 and -1 with probability .5. Let $X_0 = 0$ and write $X_n = (-1)^n A$ for all $n > 0$.
- What is $E[X_n]$, as a function of n?
- $E[X_n] = 0$ for all n.

26
Suppose A is 1 with probability 0.5 and -1 with probability 0.5. Let $X_0 = 0$ and write $X_n = (-1)^n A$ for all $n > 0$.

What is $E[X_n]$, as a function of n?

$E[X_n] = 0$ for all n.

Does this mean that X_n is a martingale?
Another example

- Suppose A is 1 with probability .5 and -1 with probability .5. Let $X_0 = 0$ and write $X_n = (-1)^n A$ for all $n > 0$.
- What is $E[X_n]$, as a function of n?
- $E[X_n] = 0$ for all n.
- Does this mean that X_n is a martingale?
- No. If $n \geq 1$, then given the information available up to stage n, I can figure out what A must be, and can hence deduce exactly what X_{n+1} will be — and it is not the same as X_n. In particular, $E[X_{n+1} | \mathcal{F}_n] = -X_n \neq X_n$.
Another example

- Suppose \(A \) is 1 with probability \(.5 \) and \(-1\) with probability \(.5 \). Let \(X_0 = 0 \) and write \(X_n = (-1)^n A \) for all \(n > 0 \).
- What is \(E[X_n] \), as a function of \(n \)?
 - \(E[X_n] = 0 \) for all \(n \).
- Does this mean that \(X_n \) is a martingale?
 - No. If \(n \geq 1 \), then given the information available up to stage \(n \), I can figure out what \(A \) must be, and can hence deduce exactly what \(X_{n+1} \) will be — and it is not the same as \(X_n \). In particular, \(E[X_{n+1} | \mathcal{F}_n] = -X_n \neq X_n \).
- Informally, \(X_n \) alternates between 1 and \(-1\). Each time it goes up and hits 1, I know it will go back down to \(-1\) on the next step.
Let T be a non-negative integer valued random variable.
Let T be a non-negative integer valued random variable.

Think of T as giving the time the asset will be sold if the price sequence is X_0, X_1, X_2, \ldots.
Let T be a non-negative integer valued random variable.

Think of T as giving the time the asset will be sold if the price sequence is X_0, X_1, X_2, \ldots.

Say that T is a stopping time if the event that $T = n$ depends only on the values X_i for $i \leq n$. In other words, the decision to sell at time n depends only on prices up to time n, not on (as yet unknown) future prices.
Which of the following is a stopping time?

1. The smallest \(T \) for which \(|X_T| = 50 \)
2. The smallest \(T \) for which \(X_T \in \{-10, 100\} \)
3. The smallest \(T \) for which \(X_T = 0 \).
4. The \(T \) at which the \(X_n \) sequence achieves the value 17 for the 9th time.
5. The value of \(T \in \{0, 1, 2, \ldots, 100\} \) for which \(X_T \) is largest.
6. The largest \(T \in \{0, 1, 2, \ldots, 100\} \) for which \(X_T = 0 \).

Answer: first four, not last two.

Let \(A_1, \ldots \) be i.i.d. random variables equal to \(-1\) with probability .5 and 1 with probability .5 and let \(X_0 = 0 \) and \(X_n = \sum_{i=1}^{n} A_i \) for \(n \geq 0 \).
Let A_1, \ldots be i.i.d. random variables equal to -1 with probability 0.5 and 1 with probability 0.5 and let $X_0 = 0$ and $X_n = \sum_{i=1}^{n} A_i$ for $n \geq 0$.

Which of the following is a stopping time?

1. The smallest T for which $|X_T| = 50$
2. The smallest T for which $X_T \in \{-10, 100\}$
3. The smallest T for which $X_T = 0$.
4. The T at which the X_n sequence achieves the value 17 for the 9th time.
5. The value of $T \in \{0, 1, 2, \ldots, 100\}$ for which X_T is largest.
6. The largest $T \in \{0, 1, 2, \ldots, 100\}$ for which $X_T = 0$.
Let A_1, \ldots be i.i.d. random variables equal to -1 with probability 0.5 and 1 with probability 0.5 and let $X_0 = 0$ and $X_n = \sum_{i=1}^{n} A_i$ for $n \geq 0$.

Which of the following is a stopping time?

1. The smallest T for which $|X_T| = 50$
2. The smallest T for which $X_T \in \{-10, 100\}$
3. The smallest T for which $X_T = 0$.
4. The T at which the X_n sequence achieves the value 17 for the 9th time.
5. The value of $T \in \{0, 1, 2, \ldots, 100\}$ for which X_T is largest.
6. The largest $T \in \{0, 1, 2, \ldots, 100\}$ for which $X_T = 0$.

Answer: first four, not last two.
Outline

Martingales and stopping times

Optional stopping theorem
Martingales and stopping times

Optional stopping theorem
Essentially says that you can't make money (in expectation) by buying and selling an asset whose price is a martingale. Precisely, if you buy the asset at some time and adopt any strategy at all for deciding when to sell it, then the expected price at the time you sell is the price you originally paid. If market price is a martingale, you cannot make money in expectation by "timing the market."

Doob’s optional stopping time theorem is contained in many basic texts on probability and Martingales. (See, for example, Theorem 10.10 of *Probability with Martingales*, by David Williams, 1991.)
Doob’s optional stopping time theorem is contained in many basic texts on probability and Martingales. (See, for example, Theorem 10.10 of *Probability with Martingales*, by David Williams, 1991.)

Essentially says that you can’t make money (in expectation) by buying and selling an asset whose price is a martingale.
Doob’s optional stopping time theorem is contained in many basic texts on probability and Martingales. (See, for example, Theorem 10.10 of Probability with Martingales, by David Williams, 1991.)

Essentially says that you can’t make money (in expectation) by buying and selling an asset whose price is a martingale.

Precisely, if you buy the asset at some time and adopt any strategy at all for deciding when to sell it, then the expected price at the time you sell is the price you originally paid.
Doob’s optional stopping time theorem is contained in many basic texts on probability and Martingales. (See, for example, Theorem 10.10 of Probability with Martingales, by David Williams, 1991.)

Essentially says that you can’t make money (in expectation) by buying and selling an asset whose price is a martingale.

Precisely, if you buy the asset at some time and adopt any strategy at all for deciding when to sell it, then the expected price at the time you sell is the price you originally paid.

If market price is a martingale, you cannot make money in expectation by “timing the market.”
When we say martingale is bounded, we mean that for some C, we have that with probability one $|X_i| < C$ for all i.

Why is this assumption necessary? Can we give a counterexample if boundedness is not assumed?

Theorem can be proved by induction if stopping time T is bounded. Unbounded T requires a limit argument. (This is where boundedness of martingale is used.)

Doob’s Optional Stopping Theorem: If the sequence X_0, X_1, X_2, \ldots is a **bounded** martingale, and T is a stopping time, then the expected value of X_T is X_0.

Doob’s Optional Stopping Theorem: statement
Doob’s Optional Stopping Theorem: statement

- **Doob’s Optional Stopping Theorem**: If the sequence X_0, X_1, X_2, \ldots is a **bounded** martingale, and T is a stopping time, then the expected value of X_T is X_0.

- When we say martingale is bounded, we mean that for some C, we have that with probability one $|X_i| < C$ for all i.
Doob’s Optional Stopping Theorem: statement

- **Doob’s Optional Stopping Theorem:** If the sequence X_0, X_1, X_2, \ldots is a **bounded** martingale, and T is a stopping time, then the expected value of X_T is X_0.

- When we say martingale is bounded, we mean that for some C, we have that with probability one $|X_i| < C$ for all i.

- Why is this assumption necessary?
Doob’s Optional Stopping Theorem: statement

- **Doob’s Optional Stopping Theorem:** If the sequence X_0, X_1, X_2, \ldots is a **bounded** martingale, and T is a stopping time, then the expected value of X_T is X_0.

- When we say martingale is bounded, we mean that for some C, we have that with probability one $|X_i| < C$ for all i.

- Why is this assumption necessary?

- Can we give a counterexample if boundedness is not assumed?
Doob’s Optional Stopping Theorem: statement

- **Doob’s Optional Stopping Theorem:** If the sequence X_0, X_1, X_2, \ldots is a **bounded** martingale, and T is a stopping time, then the expected value of X_T is X_0.

- When we say martingale is bounded, we mean that for some C, we have that with probability one $|X_i| < C$ for all i.

- Why is this assumption necessary?

- Can we give a counterexample if boundedness is not assumed?

- Theorem can be proved by induction if *stopping time* T is bounded. Unbounded T requires a limit argument. (This is where boundedness of martingale is used.)
Efficient market hypothesis: new information is instantly absorbed into the stock value, so expected value of the stock tomorrow should be the value today. (If it were higher, statistical arbitrageurs would bid up today's price until this was not the case.)

But what about interest, risk premium, etc.?

According to the fundamental theorem of asset pricing, the discounted price $X^n A^n$, where A^n is a risk-free asset, is a martingale with respected to risk neutral probability. More on this next lecture.

Many asset prices are believed to behave approximately like martingales, at least in the short term.
Many asset prices are believed to behave approximately like martingales, at least in the short term.

Efficient market hypothesis: new information is instantly absorbed into the stock value, so expected value of the stock tomorrow should be the value today. (If it were higher, statistical arbitrageurs would bid up today’s price until this was not the case.)
Many asset prices are believed to behave approximately like martingales, at least in the short term.

Efficient market hypothesis: new information is instantly absorbed into the stock value, so expected value of the stock tomorrow should be the value today. (If it were higher, statistical arbitrageurs would bid up today’s price until this was not the case.)

But what about interest, risk premium, etc.?
Many asset prices are believed to behave approximately like martingales, at least in the short term.

Efficient market hypothesis: new information is instantly absorbed into the stock value, so expected value of the stock tomorrow should be the value today. (If it were higher, statistical arbitrageurs would bid up today’s price until this was not the case.)

But what about interest, risk premium, etc.?

According to the **fundamental theorem of asset pricing**, the discounted price $\frac{X(n)}{A(n)}$, where A is a risk-free asset, is a martingale with respected to **risk neutral probability**. More on this next lecture.
In previous lectures, we interpreted the conditional expectation $E[X|Y]$ as a random variable.

- Depends only on Y. Describes expectation of X given observed Y value.
- We showed $E[E[X|Y]] = E[X]$.
- This means that the three-element sequence $E[X], E[X|Y], X$ is a martingale.

Martingales as successively revised best guesses

- The two-element sequence $E[X], X$ is a martingale.
The two-element sequence $E[X], X$ is a martingale.

In previous lectures, we interpreted the conditional expectation $E[X|Y]$ as a random variable.
Martingales as successively revised best guesses

- The two-element sequence $E[X], X$ is a martingale.
- In previous lectures, we interpreted the conditional expectation $E[X|Y]$ as a random variable.
- Depends only on Y. Describes expectation of X given observed Y value.
Martingales as successively revised best guesses

- The two-element sequence $E[X], X$ is a martingale.
- In previous lectures, we interpreted the conditional expectation $E[X|Y]$ as a random variable.
- Depends only on Y. Describes expectation of X given observed Y value.
- We showed $E[E[X|Y]] = E[X]$.
The two-element sequence $E[X], X$ is a martingale.

In previous lectures, we interpreted the conditional expectation $E[X|Y]$ as a random variable.

Depends only on Y. Describes expectation of X given observed Y value.

We showed $E[E[X|Y]] = E[X]$.

This means that the three-element sequence $E[X], E[X|Y], X$ is a martingale.
The two-element sequence $E[X], X$ is a martingale.

In previous lectures, we interpreted the conditional expectation $E[X|Y]$ as a random variable.

Depends only on Y. Describes expectation of X given observed Y value.

We showed $E[E[X|Y]] = E[X]$.

This means that the three-element sequence $E[X], E[X|Y], X$ is a martingale.

More generally if Y_i are any random variables, the sequence $E[X], E[X|Y_1], E[X|Y_1, Y_2], E[X|Y_1, Y_2, Y_3], \ldots$ is a martingale.
Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:
I have something crazy to tell you, and so sorry to do this by email. (Where’s your phone!?) I’ve been spending lots of time with a guy named Robert, a visiting database consultant on my project who seems very impressed by my work. Robert wants me to join his startup in Palo Alto. Exciting!!! Of course I said I’d have to talk to you first, because you are absolutely my top priority in my life, and you’re stuck at MIT for at least three more years... but honestly, I’m just so confused on so many levels. Call me!!! I love you! Alice

Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:

- Oh Ivan, I’ve missed you so much!
I've been spending lots of time with a guy named Robert, a visiting database consultant on my project who seems very impressed by my work. Robert wants me to join his startup in Palo Alto. Exciting!!! Of course I said I'd have to talk to you first, because you are absolutely my top priority in my life, and you're stuck at MIT for at least three more years... but honestly, I'm just so confused on so many levels. Call me!!! I love you! Alice
I’ve been spending lots of time with a guy named Robert, a visiting database consultant on my project who seems very impressed by my work. Robert wants me to join his startup in Palo Alto. Exciting!!! Of course I said I’d have to talk to you first, because you are absolutely my top priority in my life, and you’re stuck at MIT for at least three more years... but honestly, I’m just so confused on so many levels. Call me!!! I love you! Alice

Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:

- Oh Ivan, I’ve missed you so much! 12
- I have something crazy to tell you, 24
- and so sorry to do this by email. (Where’s your phone!?) 38
I'm a visiting database consultant on your project who seems very impressed by your work. Robert wants me to join his startup in Palo Alto. Exciting!!! Of course I said I'd have to talk to you first, because you are absolutely my top priority in my life, and you're stuck at MIT for at least three more years... but honestly, I'm just so confused on so many levels. Call me!!! I love you! Alice

Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:

- Oh Ivan, I’ve missed you so much! 12
- I have something crazy to tell you, 24
- and so sorry to do this by email. (Where’s your phone!?) 38
- I’ve been spending lots of time with a guy named Robert, 52
Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:

- Oh Ivan, I’ve missed you so much! 12
- I have something crazy to tell you, 24
- and so sorry to do this by email. (Where’s your phone!?) 38
- I’ve been spending lots of time with a guy named Robert, 52
- a visiting database consultant on my project 34
Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:

► Oh Ivan, I’ve missed you so much! 12
► I have something crazy to tell you, 24
► and so sorry to do this by email. (Where’s your phone!?) 38
► I’ve been spending lots of time with a guy named Robert, 52
► a visiting database consultant on my project 34
► who seems very impressed by my work. 23
Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:

- Oh Ivan, I’ve missed you so much! 12
- I have something crazy to tell you, 24
- and so sorry to do this by email. (Where’s your phone!?) 38
- I’ve been spending lots of time with a guy named Robert, 52
- a visiting database consultant on my project 34
- who seems very impressed by my work. 23
- Robert wants me to join his startup in Palo Alto. 38
Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:

- Oh Ivan, I’ve missed you so much! 12
- I have something crazy to tell you, 24
- and so sorry to do this by email. (Where’s your phone!?) 38
- I’ve been spending lots of time with a guy named Robert, 52
- a visiting database consultant on my project 34
- who seems very impressed by my work. 23
- Robert wants me to join his startup in Palo Alto. 38
- Exciting!!! Of course I said I’d have to talk to you first, 24
Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:

- Oh Ivan, I’ve missed you so much! 12
- I have something crazy to tell you, 24
- and so sorry to do this by email. (Where’s your phone!?) 38
- I’ve been spending lots of time with a guy named Robert, 52
- a visiting database consultant on my project 34
- who seems very impressed by my work. 23
- Robert wants me to join his startup in Palo Alto. 38
- Exciting!!! Of course I said I’d have to talk to you first, 24
- because you are absolutely my top priority in my life, 8

Martingales as real-time subjective probability updates
Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:

- Oh Ivan, I’ve missed you so much! 12
- I have something crazy to tell you, 24
- and so sorry to do this by email. (Where’s your phone!?) 38
- I’ve been spending lots of time with a guy named Robert, 52
- a visiting database consultant on my project 34
- who seems very impressed by my work. 23
- Robert wants me to join his startup in Palo Alto. 38
- Exciting!!! Of course I said I’d have to talk to you first, 24
- because you are absolutely my top priority in my life, 8
- and you’re stuck at MIT for at least three more years... 11
Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:

- Oh Ivan, I’ve missed you so much! 12
- I have something crazy to tell you, 24
- and so sorry to do this by email. (Where’s your phone!?) 38
- I’ve been spending lots of time with a guy named Robert, 52
- a visiting database consultant on my project 34
- who seems very impressed by my work. 23
- Robert wants me to join his startup in Palo Alto. 38
- Exciting!!! Of course I said I’d have to talk to you first, 24
- because you are absolutely my top priority in my life, 8
- and you’re stuck at MIT for at least three more years… 11
- but honestly, I’m just so confused on so many levels. 15
Ivan sees email from girlfriend with subject “some possibly serious news”, thinks there’s a 20 percent chance she’ll break up with him by email’s end. Revises number after each line:

- Oh Ivan, I’ve missed you so much! 12
- I have something crazy to tell you, 24
- and so sorry to do this by email. (Where’s your phone!?) 38
- I’ve been spending lots of time with a guy named Robert, 52
- a visiting database consultant on my project 34
- who seems very impressed by my work. 23
- Robert wants me to join his startup in Palo Alto. 38
- Exciting!!! Of course I said I’d have to talk to you first, 24
- because you are absolutely my top priority in my life, 8
- and you’re stuck at MIT for at least three more years… 11
- but honestly, I’m just so confused on so many levels. 15
- Call me!!! I love you! Alice 0
Example: let C be the amount of oil available for drilling under a particular piece of land. Suppose that ten geological tests are done that will ultimately determine the value of C. Let C_n be the **conditional expectation** of C given the outcome of the first n of these tests. Then the sequence $C_0, C_1, C_2, \ldots, C_{10} = C$ is a martingale.
Example: let C be the amount of oil available for drilling under a particular piece of land. Suppose that ten geological tests are done that will ultimately determine the value of C. Let C_n be the conditional expectation of C given the outcome of the first n of these tests. Then the sequence $C_0, C_1, C_2, \ldots, C_{10} = C$ is a martingale.

Let A_i be my best guess at the probability that a basketball team will win the game, given the outcome of the first i minutes of the game. Then (assuming some “rationality” of my personal probabilities) A_i is a martingale.