Prediction

MIT 18.655

Dr. Kempthorne

Spring 2016
Prediction Problems

Targets of Prediction

- Change in value of portfolio over fixed holding period.
- Long-term interest rate in 3 months
- Survival time of patients being treated for cancer
- Liability exposures of a drug company
- Sales of a new prescription drug
- Landfall zone of developing hurricane
- Total snowfall for next winter season
- First-year college grade point average given SAT test scores

General Setup

- Random Variable Y: response variable (target of prediction).
- Random Vector $Z = (Z_1, Z_2, \ldots, Z_p)$: explanatory variables
- Joint distribution: $(Z, Y) \sim P_\theta, \theta \in \Theta.$
Prediction Problem

General Setup (continued)

- Predictor function: \(g(Z) \in \{g(\cdot) : \mathcal{Z} \to \mathcal{R} \} \)
 \(\mathcal{Z} = \) sample space of explanatory-variables vector \(Z \)
 \(\mathcal{R} = \) sample space of response variable \(Y \).

- Performance Measures
 - Mean Squared Prediction Error
 \(MSPE(g(Z)) = E[(Y - g(Z))^2] \)
 - Mean Absolute Prediction Error
 \(MAPE(g(Z)) = E[|Y - g(Z)|] \)

where \(E[\cdot] \) is expectation under joint distribution of \((Z, Y) \).

- Classes of possible predictor functions
 - Non-parametric class \(\mathcal{G}_{NP} = \{g : \mathcal{R}^p \to \mathcal{R} \} \)
 - Linear-predictor class
 \(\mathcal{G}_L = \{g : g(z) = a + \sum_{j=1}^{p} b_j Z_j, \text{ for fixed } a, b_1, \ldots, b_p \in \mathcal{R} \} \)
Optimal Predictors

Case 1: No Covariates

- With no covariates, $g(Z) = c$, a constant

Lemma 1.4.1 Suppose $EY^2 < \infty$. Then

(a) $E(Y - c)^2 < \infty$ for all c

(b) $E(Y - c)^2$ is minimized uniquely by $c = \mu = E(Y)$.

(c) $E(Y - c)^2 = \text{Var}(Y) + (\mu - c)^2$

Proof

(a): See Exercise 1.4.25. Hint: Whatever Y and c:

$$\frac{1}{2}Y^2 - c^2 \leq (Y - c)^2 \leq 2(Y^2 + c^2)$$

(b): $E(Y^2) < \infty \iff \mu$ exists.

$$E[(Y - c)^2] = E[Y^2] - 2cE[Y] + c^2 = f(c)$$

$f(c)$ is a concave-up parabola in c

with minimum at $c = E[Y]$

(c): $E[(Y - \mu)^2] = E[Y^2] - \mu^2 = \text{Var}(Y)$
Optimal Predictors

Case 2: Covariates Z

- Find the function g that minimizes $E[(Y - g(Z))^2]$

Theorem 1.4.1 If Z is any random vector and Y is any random variable and $\mu(Z) = E[Y \mid Z]$, then either

(a). $E(Y - g(Z))^2) = \infty$ for every function g or

(b). $E(Y - \mu(Z))^2 \leq E(Y - g(Z))^2$ for every g and

- Strict inequality holds unless $g(Z) = \mu(Z)$
- $\mu(Z) = E[Y \mid Z]$ is unique best MSPE predictor.
- $E(Y - g(Z))^2) = E(Y - \mu(Z))^2 + E(g(Z) - \mu(Z))^2$

Proof By substitution theorem for cond. expectations (B.1.16)

$$E[(Y - g(Z))^2 \mid Z = z] = E[(Y - g(z))^2 \mid Z = z]$$

for any function $g(\cdot)$. By Lemma 1.4.1, since $g(z)$ is a constant

$$E(Y - g(z))^2 \mid Z = z) = E((Y - \mu(z))^2 \mid Z = z) + (g(z) - \mu(z))^2$$

Result (b) follows by B.1.20 taking expectations of both sides
Optimal Predictors

By Theorem 1.4.1 If $E(Y^2) < \infty$ then
\[E(Y - g(Z))^2 = E(Y - \mu(Z))^2 + E(g(Z) - \mu(Z))^2 \]
where $\mu(Z) = E[Y \mid Z]$

Special Case: $g(z) \equiv \mu = E(Y)$ (no dependence on z)
\[E(Y - \mu)^2 = E(Y - \mu(Z))^2 + E(\mu - \mu(Z))^2 \]
i.e.,
\[\text{Var}(Y) = E(\text{Var}(Y \mid Z)) + \text{Var}(E(Y \mid Z)) \]

Definition: Random variables U and V with $E[UV] < \infty$ are uncorrelated if $E \left([V - E(V)][U - E(U)] \right) = 0$

General Prediction Problem
- Predict Y given $Z = z$ using the joint distribution of (Z, Y).
- Let $\mu(Z) = E(Y \mid Z)$ be predictor of Y
- Let $\epsilon = Y - \mu(Z)$ be random prediction error
 \[Y = \mu(Z) + \epsilon \]
General Prediction Problem (again)

- Predict Y given $Z = z$ using the joint distribution of (Z, Y).
- Let $\mu(Z) = E(Y \mid Z)$ be predictor of Y
- Let $\epsilon = Y - \mu(Z)$ be random prediction error
 \[Y = \mu(Z) + \epsilon \]

Proposition 1.4.1 Suppose that $Var(Y) < \infty$, then

(a) ϵ is uncorrelated with every function of Z
(b) $\mu(Z)$ and ϵ are uncorrelated
(c) $Var(Y) = Var(\mu(Z)) + Var(\epsilon)$

Proof (a). Let $h(Z)$ be any function of Z, then

\[
E \{ h(Z) \epsilon \} = E \{ E[h(Z)\epsilon \mid Z] \} = 0
\]
(b) follows from (a), and (c) follows from (a) given $Y = \mu(Z) + \epsilon$
Theorem 1.4.2 If $E(|Y|) < \infty$ but Z and Y are arbitrary random variables, then

$$\text{Var}(E(Y \mid Z)) \leq \text{Var}(Y).$$

If $\text{Var}(Y) < \infty$ then strict inequality holds unless

$$Y = E(Y \mid Z),$$

i.e., Y is a function of Z.

Proof Recall the special case of Theorem 1.4.1

Special Case: $g(z) \equiv \mu = E(Y)$ (no dependence on z)

$$E(Y - \mu)^2 = E(Y - \mu(Z))^2 + E(\mu - \mu(Z))^2$$

i.e.,

$$\text{Var}(Y) = E(\text{Var}(Y \mid Z)) + \text{Var}(E(Y \mid Z))$$

The first part follows immediately. The second part follows iff

$$E(\text{Var}(Y \mid Z)) = E(Y - E(Y \mid Z))^2 = 0.$$
Example 1.4.1 Assembly line operating at varying capacity, month-by-month. Every day, the assembly line is susceptible to shutdowns due to mechanical failure.

- \(Z = \) capacity state, \(Z \in \{\frac{1}{4}, \frac{1}{2}, 1\} \) (fraction of full capacity)
- \(Y: \) number of shutdowns on a given day
 - sample space \(\mathcal{Y} = \{0, 1, 2, 3\} \)
- Joint distribution of \((Z, Y)\) given by the pmf function:

<table>
<thead>
<tr>
<th>(z)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(p_Z(z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{4})</td>
<td>0.10</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.25</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>0.025</td>
<td>0.025</td>
<td>0.10</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>0.025</td>
<td>0.025</td>
<td>0.15</td>
<td>0.30</td>
<td>0.50</td>
</tr>
</tbody>
</table>

| \(p_Y(y) \) | 0.15 | 0.10 | 0.30 | 0.45 | 1.00 |

Note: marginal pmf of \(Z \) (\(Y \)) given by row (col) sums
Prediction Example

- $p_Z(z)$ gives marginal distribution of capacity states
- $p_Y(y)$ gives marginal distribution of the number of failures/shutdowns per day.

Goal: Predict the number of failures per day given the capacity state of the assembly line for the month.

Solution: The best MSPE predictor function is $E[Y \mid Z]$

Using the joint distribution for (Z, Y) we can compute:

$$
\mu(z) = E[Y \mid Z = z] = \frac{\sum_{y=0}^{3} y p(z, y)}{\sum_{y=0}^{3} p(z, y)}
$$

$$
= \begin{cases}
1.20, & \text{if } Z = \frac{1}{4}, \\
2.10, & \text{if } Z = \frac{1}{2}, \\
2.45, & \text{if } Z = 1
\end{cases}
$$
Two ways to compute the MSPE of $\mu(z)$:

$$E[Y - E(Y \mid Z)]^2 = \sum_{y=0}^{3} (y - \mu(z))^2 p(z, y) = 0.088625$$

or

$$E[Y - E(Y \mid Z)]^2 = \text{Var}(Y) - \text{Var}(E(Y \mid Z))$$
$$= E(Y^2) - E[(E(Y \mid Z))^2]$$
$$= \sum y^2 p_Y(y) - \sum E[(Y \mid Z = z)]^2 p_Z(z)$$
$$= 0.088625$$
Regression Toward the Mean

Bivariate Normal Distribution (See Section B.4)

\[
\begin{bmatrix}
Z \\
Y
\end{bmatrix} \sim \mathcal{N}_2 \left(\begin{bmatrix}
\mu_Z \\
\mu_Y
\end{bmatrix}, \Sigma \right)
\]

where

\[
E \begin{bmatrix}
Z \\
Y
\end{bmatrix} = \begin{bmatrix}
\mu_Z \\
\mu_Y
\end{bmatrix}
\]

and

\[
\Sigma = \begin{bmatrix}
\text{Cov}(Z, Z) & \text{Cov}(Z, Y) \\
\text{Cov}(Y, Z) & \text{Cov}(Y, Y)
\end{bmatrix}
= \begin{bmatrix}
\sigma_Z^2 & \rho \sigma_Z \sigma_Y \\
\rho \sigma_Z \sigma_Y & \sigma_Y^2
\end{bmatrix}
\]

Conditional Distribution

\[
y \mid z = x \sim \mathcal{N}(\mu_Y + \rho (\sigma_Y / \sigma_Z) (z - \mu_Z), \sigma_Y^2 (1 - \rho^2)).
\]

Best Predictor of \(Y \) given \(Z \): \(\mu(z) = E[Y \mid Z = z] \)

\[
\mu(z) = \mu_Y + \rho (\sigma_Y / \sigma_Z) (z - \mu_Z)
\]

“Regression toward the mean”

MSPE of \(\mu(z) \):

\[
\text{MSPE} = E[(Y - \mu(Z))^2] = \sigma_Y^2 (1 - \rho^2)
\]
Special Cases:

- $\rho = 1$: Y is perfectly predicted given Z:
 \[\mu(Z) = \mu_Y + \rho(\sigma_Y/\sigma_Z)(z - \mu_z). \]
- $\rho = 0$: Best predictor of Y is its mean:
 \[\mu(Z) = \mu_Y \text{ (constant, independent of } Z) \]

Measure of dependence of Y on Z:

\[\rho^2 = 1 - \frac{MSPE}{\sigma_Y^2} \]

Ranges from 0 (no dependence) to 1 (if $\rho = +1$ or -1)

- Galton: studied distributions of heights for fathers and sons.
 Will taller parents have taller children?
Joint Distribution of \((Z, Y)\) is

\[
\begin{bmatrix}
Z \\
Y
\end{bmatrix} \sim N_{d+1} \left(\begin{bmatrix} \mu_Z \\ \mu_Y \end{bmatrix} , \Sigma \right)
\]

where

- \(Z\) is now \(d\)-variate
 \(Z = (Z_1, Z_2, \ldots, Z_d)^T\)
- Scalar \(\mu_Z\) is now a vector: \(\mu_Z = (\mu_1, \mu_2, \ldots, \mu_d)^T\)
- The covariance matrix \(\Sigma\) is now of dimension \((d + 1) \times (d + 1)\):
 \[
 \Sigma = \begin{pmatrix}
 \Sigma_{ZZ} & \Sigma_{ZY} \\
 \Sigma_{YZ} & \sigma_{YY}
 \end{pmatrix}, \text{ where } \sigma_{YY} = \sigma^2_Y \text{ and }
 \]

\(\Sigma_{ZZ}\) is \(d \times d\) matrix with \(\|\Sigma_{ZZ}\|_{i,j} = \text{Cov}(Z_i, Z_j)\)
\(\Sigma_{Z,Y} = \Sigma_{Y,Z}^T = (\text{Cov}(Z_1, Y), \text{Cov}(Z_2, Y), \ldots, \text{Cov}(Z_d, Y))^T\)

See Section B.6 for derivation of density function.
Multivariate Normal Distribution

Conditional Distribution: \([Y \mid Z = z]\). By Theorem B.6.5:

\[
Y \mid Z = z \sim N(\mu(z), \sigma_{YY|z})
\]

where

- \(\mu(Z) = \mu_Y + (Z - \mu_Z)^T \beta\)
 with \(\beta = \Sigma^{-1}_{ZZ}\Sigma_{ZY}\)
- \(\sigma_{YY|z} = \sigma_{YY} - \Sigma_{YZ}\Sigma^{-1}_{ZZ}\Sigma_{ZY}\).

Note:

- \(\mu(Z) = E[Y \mid Z]\) is the best predictor of \(Y\)
- The MSPE of \(\mu(Z)\) is
 \[
 MSPE = E \left\{ E[(Y - \mu(Z))^2 \mid Z] \right\} = E(\sigma_{YY|z})
 = \sigma_{YY} - \Sigma_{YZ}\Sigma^{-1}_{ZZ}\Sigma_{ZY}
 \]
- Measure of dependence of \(Y\) on \(Z\) (analagous to \(\rho^2\))
 \[
 \rho^2_{ZY} = 1 - \frac{MSPE}{\sigma_Y^2}
 \]
- Terms for \(\rho^2_{ZY}\): “coefficient of determination”, “squared multiple-correlation coefficient”
Objective: Predict Y Given Z

- Joint distribution of (Z, Y) may be complex

 $\mu(Z) = E[Y \mid Z]$ may be hard to compute

- Alternative: consider class of simple predictors

Linear Predictors: 1-Dimensional Case

- Linear predictor: $g(Z) = a + bZ$, with constants a (intercept)
 and b (slope).

- Zero-Intercept linear predictor: $g(Z) = a + bZ$ with $a \equiv 0$

- Identify best linear predictors based on MSPE
Theorem 1.4.3 Suppose that $E(Z^2)$ and $E(Y^2)$ are finite and Z and Y are not constant. Then

(a). The unique best zero-intercept linear predictor is obtained by taking
\[
b = b_0 = \frac{E(ZY)}{E(Z^2)}
\]

(b). The unique best linear predictor is
\[
\mu_L(Z) = a_1 + b_1 Z, \text{ where } b_1 = \frac{\text{Cov}(Z,Y)}{\text{Var}(Z)}, \text{ and } a_1 = E(Y) - b_1 E(Z).
\]

Proof (a). $E[(Y - bZ)^2] = E[Y^2] - 2bE[ZY] + b^2E[Z^2] = h(b)$. $h(b)$ is a parabola in b: achieves minimum when $h'(b) = 0$, i.e.,
\[
-2E[ZY] + 2bE[Z^2] = 0 \implies b = \frac{E(ZY)}{E(Z^2)}
\]

In this case: $MSPE = E(Y - b_0Z)^2 = E(Y^2) - \frac{[E(ZY)]^2}{E(Z^2)}$
Proof (b). By Lemma 1.4.1
\[E(Y - a - bZ)^2 = \text{Var}(Y - bZ) + [E(Y) - bE(Z) - a]^2 \]
For any fixed value of \(b \), this is minimized by taking
\[a = E(Y) - bE(Z). \]
Substituting for \(a \), we find \(b \) minimizing
\[
E(Y - a - bZ)^2 = E([Y - E(Y)] - b[Z - E(Z)])^2
= E[Y - E(Y)]^2 + b^2 E[Z - E(Z)]^2
- 2b E([Z - E(Z)][Y - E(Y)])
= \text{Var}(Y) - 2b \text{Cov}(Z, Y) + b^2 \text{Var}(Z) = h_*(b)
\]
h_*(b) is a parabola in \(b \) which is minimized when \(h'_*(b) = 0 \)
\[-2b \text{Cov}(Z, Y) + 2b \text{Var}(Z) = 0 \implies b = b_1 = \frac{\text{Cov}(Z, Y)}{\text{Var}(Z)}\]
In this case: \(\text{MSPE} = E[Y - a_1 - b_1 Z]^2 = \text{Var}(Y) - \frac{[\text{Cov}(ZY)]^2}{\text{Var}(Z)} \)
Notes

- If the best predictor is linear ($E(Y \mid Z)$ is linear in Z) it must coincide with the best linear predictor.
- If the best predictor is non-linear ($E(Y \mid Z)$ is not linear in Z) then the best linear predictor will not have optimal MSPE.

See Example 1.4.1

Multivariate Linear Predictor For (Z, Y), where $Z = (Z_1, \ldots, Z_d)^T$ is d-dimensional covariate vector, linear predictors of Y are given by

$$
\mu_L(Z) = a + \sum_{j=1}^{d} b_j Z_j = a + Z^T b
$$

where $b = (b_1, b_2, \ldots, b_d)^T$
Definition/Notation:
- \(E(Y) = \mu_Y \), (scalar) \(\mu_Z = E(Z) \) (column \(d \)-vector)
- \(\Sigma_{ZZ} = E((Z - E(Z))(Z - E(Z))^T) \) (\(d \times d \) matrix)
- \(\Sigma_{ZY} = E((Z - E(Z))(Y - E(Y)) \) (column \(d \)-vector)

Theorem 1.4.4 If \(EY^2 < \infty \) and \(\Sigma_{ZZ}^{-1} \) exists, then the unique best linear MSPE predictor is

\[
\mu_L(Z) = \mu_Y + (Z - \mu_Z)^T \beta \quad \text{where} \quad \beta = \Sigma_{ZZ}^{-1} \Sigma_{ZY}.
\]

Proof The MSPE of the linear predictor \(\mu_L \) is

\[
MSPE = EP[Y - \mu_L(Z)]^2,
\]
where \(P \) is the joint distribution of \(X = (Z^T, Y)^T \). This expression depends only on the first and second moments of \(X \), equivalently \(\mu = E[X] \), and \(\Sigma = \text{Cov}(X) \).

If the distribution \(P \) were \(P_0 \), the multivariate normal distribution with this expectation and covariance, then \(MSPE \) is minimized by \(EP_0[Y \mid Z] = \mu_Y + (Z - \mu_Z)^T \beta = \mu_L(Z) \). Since \(P \) and \(P_0 \) have the same \(\mu \) and \(\Sigma \), if \(\mu_L \) is best MSPE for \(P_0 \) it is also best for \(P \).
Defining the *multiple correlation coefficient or coefficient of determination*

\[
\rho_{ZY}^2 = \text{Corr}^2(Y, \mu_L(Z))
\]

Remark 1.4.4 Suppose the model for \(\mu(Z) \) is linear:

\[
\mu(Z) = E(Y \mid Z) = \alpha + Z^T \beta
\]

for unknown \(\alpha \in \mathbb{R} \), and \(\beta \in \mathbb{R}^d \).

Solving for \(\alpha \) and \(\beta \) minimizing

\[
\text{MSPE} = E[Y - \mu(Z)]^2
\]

is solving for parameters minimizing a quadratic form in first/second moments of \((Z, Y)\). These yield the same solution as Theorem 1.4.4.
Remark 1.4.5 Consider a Bayesian estimation problem where \(X \sim P_\theta \) and \(\theta \sim \pi \), and the loss function is squared-error loss:
\[
L(\theta, a) = (a - \theta)^2.
\]
Identify \(Y \) with \(\theta \), and \(X \) with \(Z \), then the Bayes risk of an estimator \(\delta(X) \) of \(\theta \) is:
\[
r(\delta) = E[(\theta - \delta(X))^2] = MSPE(\delta) \] which is minimized by \(\delta(X) = E[\theta \mid X] \).

Remark 1.4.6 Connections to Hilbert Spaces (Sectin B.10)

- Space \(\mathcal{H} \) with inner product \(\langle \cdot, \cdot \rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R} \). (bilinear, symmetric, and \(\langle h, h \rangle = 0 \) iff \(h = 0 \))
- \(\|h\|^2 = \langle h, h \rangle \) is a norm
 - \(\|ch\| = |c| \cdot \|h\| \) for scalar \(c \), and
 - \(\|h_1 + h_2\| \leq \|h_1\| + \|h_2\| \) (triangle inequality)
- \(\mathcal{H} \) is complete: (contains limits)
 - If \(\{h_m, m \geq 1\}: \|h_m - h_n\| \rightarrow 0 \), as \(m, n \rightarrow \infty \) then there exists \(h \in \mathcal{H}: \|h_n - h\| \rightarrow 0 \).
Connections to Hilbert Spaces (continued)

- **Projections on Linear Spaces**
 - \(L \subset H \), a closed linear subspace of \(H \).
 - Project operator \(\Pi(\cdot \mid L) : H \to L \):
 \[
 \Pi(h \mid L) = h' \in L : \text{achieves min}\{\|h - h'\|, h' \in L\}
 \]
 which has the property
 \[
 h - \Pi(h \mid L) \perp h', \text{ for all } h' \in L.
 \]
 - \(\Pi \) is idempotent \((\Pi^2 = \Pi)\).
 - \(\Pi \) is norm-reducing: \(\|\Pi(h)\| \leq \|h\| \)
 - From Pythagoras’ Theorem:
 \[
 \|h\|^2 = \|\Pi(h \mid L)\|^2 + \|h - \Pi(h \mid L)\|^2
 \]
Hilbert Space Example:

- \(L_2(P) = \{ \text{All r.v.'s } X \text{ on a probability space: } EX^2 < \infty \} \)
- \(< Z, Y > = E(XY) \)
- If \(E(Z) = E(Y) = 0 \) and \(E(ZY) = 0 \), then
 \[Var(X + Y) = Var(X) + Var(Y) \] (Pythagoras’ Therem)
- \(\mathcal{L} \) is the linear span of 1, \(Z_1, \ldots, Z_d \)
 \[\Pi(Y \mid \mathcal{L}) = E(Y) + (\Sigma_{ZZ}^{-1} \Sigma_{ZY})^T (Z - E(Z)). \]
 See 1.4.14.
- \(\mathcal{L} \) is the space of all \(X = g(Z) \) for some \(g \) (measurable). This is a linear space that can be shown to be closed and
 \[\Pi(Y \mid \mathcal{L}) = E(Y \mid Z). \]
 See 1.4.6.
Problem 1.4.4 Determining dependence between random variables.

Problem 1.4.7 Minimizing mean-absolute prediction error – the role of the median.

Problem 1.4.11 Best estimators of Y given Z when (Y, Z) are bivariate normal considering MSPE vs considering mean absolute prediction error.

Problem 1.4.19 Minimizing a convex risk function $R(a, b)$ by solving for (a, b)

Problem 1.4.20 Binomial mixture model.

Problem 1.4.25 Mutual bounding of $E[Y^2]$ and $E(Y - c)^2$.