Problem 1. Discriminant analysis

Let \((X, Y) \in \mathbb{R}^d \times \{0, 1\}\) be a random pair such that \(\mathbb{P}(Y = k) = \pi_k > 0\) \((\pi_0 + \pi_1 = 1)\) and the conditional distribution of \(X\) given \(Y\) is \(X|Y \sim \mathcal{N}(\mu_Y, \Sigma_Y)\), where \(\mu_0 \neq \mu_1 \in \mathbb{R}^d\) and \(\Sigma_0, \Sigma_1 \in \mathbb{R}^{d \times d}\) are mean vectors and covariance matrices respectively.

1. What is the (unconditional) density of \(X\)?

2. Assume that \(\Sigma_0 = \Sigma_1 = \Sigma\) is a positive definite matrix. Compute the Bayes classifier \(h^*\) as a function of \(\mu_0, \mu_1, \pi_0, \pi_1\) and \(\Sigma\). What is the nature of the sets \(\{h^* = 0\}\) and \(\{h^* = 1\}\)?

3. Assume now that \(\Sigma_0 \neq \Sigma_1\) are two positive definite matrices. What is the nature of the sets \(\{h^* = 0\}\) and \(\{h^* = 1\}\)?

Problem 2. VC dimensions

1. Let \(\mathcal{C}\) be the class of convex polygons in \(\mathbb{R}^2\) with \(d\) vertices. Show that \(\text{VC}(\mathcal{C}) = 2d + 1\).

2. Let \(\mathcal{C}\) be the class of convex compact sets in \(\mathbb{R}^2\). Show that \(\text{VC}(\mathcal{C}) = \infty\).

3. Let \(\mathcal{C}\) be finite. Show that \(\text{VC}(\mathcal{C}) \leq \log_2(\text{card} \mathcal{C})\).

4. Give an example of a class \(\mathcal{C}\) such that \(\text{card} \mathcal{C} = \infty\) and \(\text{VC}(\mathcal{C}) = 1\).

Problem 3. Glivenko-Cantelli Theorem

Let \(X_1, \ldots, X_n\) be \(n\) i.i.d copies of \(X\) that has cumulative distribution function (cdf) \(F(t) = \mathbb{P}(X \leq t)\). The empirical cdf of \(X\) is defined by

\[
\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(X_i \leq t).
\]

1. Compute the mean and the variance of \(\hat{F}_n(t)\) and conclude that \(\hat{F}_n(t) \to F(t)\) as \(n \to \infty\) almost surely (hint: use Borel-Cantelli).
2. Show that for $n \geq 2$
\[
\sup_{t \in \mathbb{R}} |\hat{F}_n(t) - F(t)| \leq C \sqrt{\frac{\log(n/\delta)}{n}}
\]
with probability $1 - \delta$.

Problem 4. Concentration

1. Let X_1, \ldots, X_n be n i.i.d copies of $X \in [0, 1]$. Each X_i represents the size of a packages to be shipped. The shipping containers are bins of size 1 (so that each bin can hold a set of packages whose sizes sum to at most 1). Let B_n be the minimal number of bins needed to store the n packages. Show that
\[
\mathbb{P}(|B_n - \mathbb{E}[B_n]| \geq t) \leq 2e^{-\frac{nt^2}{2}}.
\]

2. Let X_1, \ldots, X_n be n i.i.d copies of $X \in \mathbb{R}^d$, $\mathbb{E}[X] = 0$ and assume that $\|X_i\| \leq 1$ almost surely for all i. Let \bar{X} denote the average of the X_is. Prove the following inequalities (the constant C may change from one inequality to the other)
\[
(a) \quad \mathbb{P}[\|\bar{X} - \mathbb{E}[\bar{X}]\| \geq t] \leq e^{-Ct^2}, \quad (b) \quad \mathbb{E}[\|\bar{X}\|] \leq \frac{C}{\sqrt{n}}, \quad (c) \quad \mathbb{P}[\|\bar{X}\| \geq t] \leq 2e^{-Ct^2}
\]

3. Let X_1, \ldots, X_n be n iid random variables, i.e. such that X_i and $-X_i$ have the same distribution. Let \bar{X} denote the average of the X_is and $V = n^{-1} \sum_{i=1}^{n} X_i^2$. Show that
\[
\mathbb{P}\left[\frac{\bar{X}}{\sqrt{V}} > t\right] \leq e^{-\frac{nt^2}{2}}.
\]
[Hint: introduce Rademacher random variables].