5. Permutation groups

Definition 5.1. Let S be a set. A **permutation** of S is simply a bijection $f: S \to S$.

Lemma 5.2. Let S be a set.

1. Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
2. Let f be a permutation of S. Then the inverse of f is a permutation of S.

Proof. Well-known. □

Lemma 5.3. Let S be a set. The set of all permutations, under the operation of composition of permutations, forms a group $A(S)$.

Proof. (5.2) implies that the set of permutations is closed under composition of functions. We check the three axioms for a group.

We already proved that composition of functions is associative.

Let $i: S \to S$ be the identity function from S to S. Let f be a permutation of S. Clearly $f \circ i = i \circ f = f$. Thus i acts as an identity.

Let f be a permutation of S. Then the inverse g of f is a permutation of S by (5.2) and $f \circ g = g \circ f = i$, by definition.

Thus inverses exist and G is a group. □

Lemma 5.4. Let S be a finite set with n elements. Then $A(S)$ has $n!$ elements.

Proof. Well-known. □

Definition 5.5. The group S_n is the set of permutations of the first n natural numbers.

We want a convenient way to represent an element of S_n. The first way, is to write an element σ of S_n as a matrix.

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 5 & 4 & 2
\end{pmatrix}
\in S_5.
$$

Thus, for example, $\sigma(3) = 5$. With this notation it is easy to write down products and inverses. For example suppose that

$$
\sigma = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 5 & 4 & 2
\end{pmatrix}, \quad \tau = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 1 & 2 & 5
\end{pmatrix}.
$$

Then

$$
\tau \sigma = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 5 & 2 & 3
\end{pmatrix}.
$$
On the other hand

\[
\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 \end{pmatrix}.
\]

In particular \(S_5 \) is not abelian.

The problem with this way of representing elements of \(S_n \) is that we don’t see much of the structure of \(\tau \) this way. For example, it is very hard to figure out the order of \(\tau \) from this representation.

Definition 5.6. Let \(\tau \) be an element of \(S_n \).

We say that \(\tau \) is a k-cycle if there are integers \(a_1, a_2, \ldots, a_k \) such that \(\tau (a_1) = a_2, \tau (a_2) = a_3, \ldots, \text{ and } \tau (a_k) = a_1 \text{ and } \tau \text{ fixes every other integer.} \)

More compactly

\[
\tau (a_i) = \begin{cases}
 a_{i+1} & i < k \\
 a_1 & i = k \\
 a_i & \text{otherwise.}
\end{cases}
\]

For example

\[
\begin{pmatrix} 1 & 2 & 3 & 4 \\
 2 & 3 & 4 & 1 \end{pmatrix}
\]

is a 4-cycle in \(S_4 \) and

\[
\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\
 1 & 5 & 3 & 2 & 4 \end{pmatrix},
\]

is a 3-cycle in \(S_5 \). Now given a k-cycle \(\tau \), there is an obvious way to represent it, which is much more compact than the first notation.

\[
\tau = (a_1, a_2, a_3, \ldots, a_k).
\]

Thus the two examples above become,

\[
(1, 2, 3, 4)
\]

and

\[
(2, 5, 4).
\]

Note that there is some redundancy. For example, obviously

\[
(2, 5, 4) = (5, 4, 2) = (4, 2, 5).
\]

Note that a k-cycle has order \(k \).

Definition-Lemma 5.7. Let \(\sigma \) be any element of \(S_n \).

Then \(\sigma \) may be expressed as a product of disjoint cycles. This factorisation is unique, ignoring 1-cycles, up to order. The cycle type of \(\sigma \) is the lengths of the corresponding cycles.
Proof. We first prove the existence of such a decomposition. Let \(a_1 = 1 \) and define \(a_k \) recursively by the formula
\[
a_{i+1} = \sigma(a_i).
\]
Consider the set
\[
\{ a_i | i \in \mathbb{N} \}.
\]
As there are only finitely many integers between 1 and \(n \), we must have some repetitions, so that \(a_i = a_j \), for some \(i < j \). Pick the smallest \(i \) and \(j \) for which this happens. Suppose that \(i \neq 1 \). Then
\[
\sigma(a_{i-1}) = a_i = \sigma(a_{j-1}).
\]
As \(\sigma \) is injective, \(a_{i-1} = a_{j-1} \). But this contradicts our choice of \(i \) and \(j \). Let \(\tau \) be the \(k \)-cycle \((a_1, a_2, \ldots, a_j) \). Then \(\rho = \sigma\tau^{-1} \) fixes each element of the set
\[
\{ a_i | i \leq j \}.
\]
Thus by an obvious induction, we may assume that \(\rho \) is a product of \(k - 1 \) disjoint cycles \(\tau_1, \tau_2, \ldots, \tau_{k-1} \) which fix this set.
But then
\[
\sigma = \rho\tau = \tau_1\tau_2\ldots\tau_k,
\]
where \(\tau = \tau_k \).

Now we prove uniqueness. Suppose that \(\sigma = \sigma_1\sigma_2 \ldots \sigma_k \) and \(\sigma = \tau_1\tau_2 \ldots \tau_1 \) are two factorisations of \(\sigma \) into disjoint cycles. Suppose that \(\sigma_1(i) = j \). Then for some \(p \), \(\tau_p(i) \neq i \). By disjointness, in fact \(\tau_p(i) = j \). Now consider \(\sigma_1(j) \). By the same reasoning, \(\tau_p(j) = \sigma_1(j) \). Continuing in this way, we get \(\sigma_1 = \tau_p \). But then just cancel these terms from both sides and continue by induction.

\[\square\]

Example 5.8. Let
\[
\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}.
\]

Look at 1. 1 is sent to 3. But 3 is sent back to 1. Thus part of the cycle decomposition is given by the transposition \((1, 3)\). Now look at what is left \(\{2, 4, 5\} \). Look at 2. Then 2 is sent to 4. Now 4 is sent to 5. Finally 5 is sent to 2. So another part of the cycle type is given by the 3-cycle \((2, 4, 5)\).

I claim then that
\[
\sigma = (1, 3)(2, 4, 5) = (2, 4, 5)(1, 3).
\]

This is easy to check. The cycle type is \((2, 3)\).

As promised, it is easy to compute the order of a permutation, given its cycle type.

Lemma 5.9. Let \(\sigma \in S_n \) be a permutation, with cycle type \((k_1, k_2, \ldots, k_l)\). The order of \(\sigma \) is the least common multiple of \(k_1, k_2, \ldots, k_l \).
Proof. Let k be the order of σ and let $\sigma = \tau_1\tau_2 \ldots \tau_l$ be the decomposition of σ into disjoint cycles of lengths k_1, k_2, \ldots, k_l.

Pick any integer h. As $\tau_1, \tau_2, \ldots, \tau_l$ are disjoint, it follows that

$$\sigma^h = \tau_1^h \tau_2^h \ldots \tau_l^h.$$

Moreover the RHS is equal to the identity, iff each individual term is equal to the identity.

It follows that

$$\tau_i^k = e.$$

In particular k_i divides k. Thus the least common multiple, m of k_1, k_2, \ldots, k_l divides k. But $\sigma^m = \tau_1^m \tau_2^m \tau_3^m \ldots \tau_l^m = e$. Thus m divides k and so $k = m$. \hfill \square

Note that (5.7) implies that the cycles generate S_n. It is a natural question to ask if there is a smaller subset which generates S_n. In fact the 2-cycles generate.

Lemma 5.10. The transpositions generate S_n.

Proof. It suffices to prove that every permutation is a product of transpositions. We give two proofs of this fact.

Here is the first proof. As every permutation σ is a product of cycles, it suffices to check that every cycle is a product of transpositions. Consider the k-cycle $\sigma = (a_1, a_2, \ldots, a_k)$. I claim that this is equal to

$$\sigma = (a_1, a_k)(a_1, a_{k-1})(a_1, a_{k-2}) \cdots (a_1, a_2).$$

It suffices to check that they have the same effect on every integer j between 1 and n. Now if j is not equal to any of the a_i, there is nothing to check as both sides fix j. Suppose that $j = a_i$. Then $\sigma(j) = a_{i+1}$. On the other hand the transposition (a_1, a_i) sends j to a_1, the ones before this do nothing to j, and the next transposition then sends a_1 to a_{i+1}. No other of the remaining transpositions have any effect on a_{i+1}. Therefore the RHS also sends $j = a_i$ to a_{i+1}. As both sides have the same effect on j, they are equal. This completes the first proof.

To see how the second proof goes, think of a permutation as just being a rearrangement of the n numbers (like a deck of cards). If we can find a product of transpositions, that sends this rearrangement back to the trivial one, then we have shown that the inverse of the corresponding permutation is a product of transpositions. Since a transposition is its own inverse, it follows that the original permutation is a product of transpositions (in fact the same product, but in the opposite order). In other words if

$$\tau_k \cdot \cdots \cdot \tau_3 \cdot \tau_2 \cdot \tau_1 \cdot \sigma = e,$$

4
then multiplying on the right by τ_i, in the opposite order, we get

$$\sigma = \tau_1 \cdot \tau_2 \cdot \tau_3 \cdots \cdot \tau_k.$$

The idea is to put back the cards into the right position, one at a time. Suppose that the first $i - 1$ cards are in the right position. Suppose that the ith card is in position j. As the first $i - 1$ cards are in the right position, $j \geq i$. We may assume that $j > i$, otherwise there is nothing to do. Now look at the transposition (i, j). This puts the ith card into the right position. Thus we are done by induction on i. \[\square\]