THEOREM (Refined Noether Normalization Lemma). Let \(k \) be a field, \(R \) a finitely generated \(k \)-algebra, and \(a_1 \subset \cdots \subset a_r \subsetneq R \) a chain of proper ideals. Then there exist algebraically independent elements \(t_1, \ldots, t_n \) of \(R \) such that

(a) \(R \) is module finite over \(k[t_1, \ldots, t_n] \);
(b) for \(1 \leq i \leq r \), there is an \(h(i) \) such that \(a_i \cap k[t_1, \ldots, t_n] = (t_1, \ldots, t_{h(i)}) \).

PROOF (Cf. [Bourbaki, “Commutative Algebra,” Thm. 1, p. 344].) By hypothesis, \(R = S/b \) where \(S \) is a polynomial ring \(k[T_1, \ldots, T_m] \). Say \(a_i = b_i/b_0 \). Then it suffices to prove the assertion for \(S \) and \(b_0 \subset b_1 \subset \cdots \subset b_r \). Thus we may assume \(R \) is the polynomial algebra \(k[T_1, \ldots, T_m] \). The proof proceeds by induction on \(r \).

First, suppose \(r = 1 \) and \(a_1 \) is a principal ideal generated by a nonzero element \(t_1 \). Then \(t_1 \notin k \) because \(a_1 \neq R \). Write \(t_1 = \sum a_{(j)} T_1^{j_1} \cdots T_m^{j_m} \) where \((j_1, \ldots, j_m) \in \mathbb{Z}_{\geq 0}^m \) and \(a_{(j)} \in k \) is nonzero. We are going to choose positive integers \(s_i \) for \(2 \leq i \leq m \) such that \(T_1 \) is integral over \(R' := k[t_1, t_2, \ldots, t_m] \) where \(t_i := T_i - T_1^{s_i} \). Then clearly, (a) follows.

Note that \(T_1 \) satisfies the equation,

\[
t_1 - \sum a_{(j)} T_1^{j_1} (t_2 + T_1^{s_2}) \cdots (t_m + T_1^{s_m})^{j_m} = 0.
\]

Set \(e(j) := j_1 + s_2 j_2 + \cdots + s_m j_m \). Take \(s_i := \ell i \) where \(\ell \) is an integer greater than all of the \(j_i \). Then the \(e(j) \) are distinct. Let \(e(j') \) be largest \(e(j) \). Then the above equation can be written in the form

\[
a_{(j')} T_1^{e(j')} + \sum_{v < e(j')} Q_v T_1^v = 0
\]

where \(Q_v \in R' \), and hence, \(T_1 \) is integral over \(R' \). Thus (a) holds.

By the theory of transcendence bases [Artin, “Algebra,” Ch. 13, §8, pp. 525–527], the elements \(t_1, \ldots, t_m \) are algebraically independent. Let \(x \in a_1 \cap R' \). Then \(x = t_1 x' \) where \(x' \in R \cap k(t_1, \ldots, t_m) \). Furthermore, \(R \cap k(t_1, \ldots, t_m) = R' \) because \(R' \) is normal as it is a polynomial algebra. Hence \(a_1 \cap R' = t_1 R' \). Thus (b) holds in case \(r = 1 \) and \(a_1 \) is principal.

Second, suppose \(r = 1 \) and \(a_1 \) is arbitrary. If \(a_1 = 0 \), then we may take \(t_i := t_i \). Also assume \(a_1 \neq 0 \). The proof proceeds by induction on \(m \). The case \(m = 1 \) follows from the first case (but is simpler) because \(k[T_1] \) is a principal ring. Let \(t_1 \in a_1 \) be nonzero. By the first case, there exist elements \(u_2, \ldots, u_m \) such that \(t_1, u_2, \ldots, u_m \) are algebraically independent and satisfy (a) and (b) with respect to \(R \) and \(t_1 R \).

By induction, there exist elements \(t_2, \ldots, t_m \) satisfying (a) and (b) with respect to \(k[u_2, \ldots, u_m] \) and \(a_1 \cap k[u_2, \ldots, u_m] \).

Set \(R' := k[t_1, \ldots, t_m] \). Since \(R \) is module finite over \(k[t_1, u_2, \ldots, u_m] \) and the latter is module finite over \(R' \), the former is module finite over \(R' \). Hence (a) holds, and \(t_1, \ldots, t_m \) are algebraically independent. Moreover, by hypothesis,

\[
a_1 \cap k[t_2, \ldots, t_m] = (t_2, \ldots, t_h)
\]

for some \(h \leq m \). So \(a_1 \cap k[t_1, \ldots, t_m] \supset (t_1, \ldots, t_h) \).

Conversely, given \(x \in a_1 \cap R' \), write \(x = \sum_{i=0}^{n} Q_i t_i^j \) where \(Q_i \in k[t_1, \ldots, t_m] \). Since \(t_1 \in a_1 \), we have \(Q_0 \in a_1 \cap k[t_2, \ldots, t_m] \), so \(Q_{(0)} \in (t_2, \ldots, t_h) \). Hence \(x \in (t_1, \ldots, t_h) \). Thus \(a_1 \cap R' = (t_1, \ldots, t_h) \). Thus (b) holds for \(r = 1 \).
Finally, suppose the theorem holds for \(r - 1 \). Let \(u_1, \ldots, u_m \) be algebraically independent elements of \(R \) satisfying (a) and (b) for the sequence \(a_1 \subset \cdots \subset a_{r-1} \), and set \(s := h(r-1) \). By the second case, there exist elements \(t_{s+1}, \ldots, t_m \) satisfying (a) and (b) for \(k[u_{s+1}, \ldots, u_m] \) and \(a_r \cap k[u_{s+1}, \ldots, u_m] \). Then
\[
a_r \cap k[t_{s+1}, \ldots, t_m] = (t_{s+1}, \ldots, t_{h(r)})
\]
for some \(h(r) \). Set \(t_i := u_i \) for \(1 \leq i \leq s \). Set \(R' := k[t_1, \ldots, t_m] \). Then \(R \) is module finite over \(k[u_1, \ldots, u_m] \) by hypothesis, and \(k[u_1, \ldots, u_m] \) is module finite over \(R' \) by hypothesis. Hence \(R \) is module finite over \(R' \). Thus (a) holds, and \(t_1, \ldots, t_m \) are algebraically independent over \(k \).

Fix \(i \) with \(1 \leq i \leq r \). Set \(\ell := h(i) \). Then \(t_1, \ldots, t_\ell \in a_i \). Given \(x \in a_i \cap R' \), write \(x = \sum Q(v) t_1^{\nu_1} \cdots t_\ell^{\nu_\ell} \) with \((v) = (v_1, \ldots, v_\ell) \in \mathbb{Z}_{\geq 0}^\ell \) and \(Q(v) \in k[t_{\ell+1}, \ldots, t_m] \). Then \(Q(0) \) lies in \(a_i \cap k[t_{\ell+1}, \ldots, t_m] \). The latter is equal to zero. It is zero if \(i \leq r - 1 \) because it lies in \(a_i \cap k[u_{\ell+1}, \ldots, u_m] \), which is equal to zero. and \(a_r \cap k[t_{\ell+1}, \ldots, t_m] \) is equal to \((t_{\ell+1}, \ldots, t_m) \) by hypothesis. So \(a_r \cap k[t_{\ell+1}, \ldots, t_m] = 0 \). Thus \(Q(0) = 0 \). Hence \(x \in (t_1, \ldots, t_{h(i)}) \). Thus \(a_i \cap R' \) is contained in \((t_1, \ldots, t_{h(i)}) \). So the two are equal. Thus (b) holds, and the theorem is proved.

Remark (Another proof). Suppose \(k \) is infinite. Then in the proof of the first case, we can take \(t_i := T_i - a_i T_1 \) for suitable \(a_i \in k \). Namely, say \(t_1 = H_d + \cdots + H_0 \) where \(H_i \) is homogeneous of degree \(i \) in \(T_1, \ldots, T_m \) and \(H_d \neq 0 \). Since \(k \) is infinite, there exist \(a_i \in k \) such that \(H_d(1, a_2, \ldots, a_m) \neq 0 \). Since \(H_d(1, a_2, \ldots, a_m) \) is the coefficient of \(T_1^d \) in
\[
H_d(T_1, t_2 + a_2 T_1, \ldots, t_m + a_m T_1),
\]
after collecting like powers of \(T_1 \), the equation
\[
t_1 - H_d(T_1, t_2 + a_2 T_1, \ldots, t_m + a_m T_1) - \cdots - H_0(T_1, t_2 + a_2 T_1, \ldots, t_m + a_m T_1) = 0
\]
becomes an equation of integral dependence of degree \(d \) for \(T_1 \) over \(k[t_1, \ldots, t_m] \).