Last homework due Dec. 2, take home final due Dec. 10. Make-up lecture Dec. 11.
11/20/03

Let \(X \) be a variety. We had from last time a map
\[
O_X \xrightarrow{d} \Omega^1_X, \text{ a sheaf of } O_X\text{-modules, where } d \text{ was a derivation.}
\]

For all affine \(U \subset X, R = \Gamma(U, O_X) \), then there was a map \(R \xrightarrow{d} \Omega^1_X(U) \) was the universal derivation.

A derivation is a map \(\delta : R \rightarrow M \) such that \(\delta \) is \(k \)-linear and \(\delta(fg) = f \delta(g) + g \delta(f) \). \(d \) is universal such that \(R \xrightarrow{d} \Omega^1_X(U) \) factors any \(\delta : R \rightarrow M \) with a unique \(R \)-linear map from \(\Omega^1_X(U) \rightarrow M \).

Let \(R = k[X_1, \ldots, X_n]/(f_1, \ldots, f_r) \). Then \(\Omega = Rdx_1 \oplus \cdots \oplus Rdx_n/(df_i) \).

That is, \(\Omega \) is the cokernel of the map \(R^r \xrightarrow{J} Rdx_1 \oplus \cdots \oplus Rdx_n \) where \(J \) is the jacobian
\[
\begin{pmatrix}
\delta f_1/\delta x_1 & \cdots & \delta f_r/\delta x_1 \\
\vdots & & \vdots \\
\delta f_1/\delta x_n & \cdots & \delta f_r/\delta x_n
\end{pmatrix}
\]

where \(e_i \mapsto (\sum_j \frac{\delta f_i}{\delta x_j} dx_j) \).

Then \(\Omega^1_X(D(f)) = \Omega \otimes_R Rf \). If \(x \in X \) then the stalk \(\Omega^1_{X,x} = \Omega \otimes_R \mathcal{O}_{m_x} \).

We write \(\Omega^1_X(x) \) to be \(\Omega^1_{X,x} \otimes \mathcal{O}_{m_x} k \) from \(\Omega^1_{X,x} \otimes_R k \) via the quotient map \(R \rightarrow \mathcal{O}_{m_x} \).

Example. \(V(y^2 - x^2(x + 1)) \subset \mathbb{A}^2 \).

\[
R \xrightarrow{(-3x^2-2y, 2x)} Rdx \oplus Rdy \rightarrow \Omega.
\]

If we have \(x = (a, b) \), then we have the sequence
\[
k \xrightarrow{(-3a^2-2b, 2a)} dx \oplus dy \rightarrow \Omega^1_X(x) \rightarrow 0
\]

by tensoring with \(k \). Then \(\dim \Omega^1_X(x) = 2 \) if \(x = (0, 0) \), and \(1 \) if \(x \neq (0, 0) \).

Lemma. Let \(X \) be a variety, \(x \in X \). Then there is a natural isomorphism \(\text{Hom}_{O_{X,x}}(\Omega^1_{X,x}, k) = \text{Hom}_k(\Omega^1_X(x), k) = \text{Hom}_k(m_x/m^2_x, k) \). This last equality is what we must prove; the first is really just from properties of tensor products.

Cor. \(O_{X,x} \) is regular \(\iff \dim_k \Omega^1_X(x) = \dim X \).

Pf. of Lemma. \(\text{Hom}_{O_{X,x}}(\Omega^1_{X,x}, k) \) is the set of derivations \(\delta : O_{X,x} \rightarrow k \). This is cheating a little because we only know this for affine opens, and this statement is passing to the limit, but it’s okay.

Now note: any such map must kill \(m^2_x \), because \(\delta(xy) = x\delta(y) + y\delta(x) \) so if both things are in \(m_x \) then both parts on the right are in \(m_x \) and are thus 0 in \(k \). So our set of homomorphisms is just the set of linear maps \(m/m^2 \rightarrow k \).

We have a map
\[
m/m^2 \rightarrow O_{X,x}/m^2 \xrightarrow{\delta} k,
\]
where the composition is \(k \)-linear. Note that for any \(f \in O_{X,x} \), we have that \(\delta(f) = \delta(f(x) + (f - f(x)) = \delta(f - f(x)) \) where \(f - f(x) \) is in the maximal ideal so it is determined by this map.

\textbf{Cor.} \ \ \ \dim_k \Omega^1_X(x) = \dim_k m/m^2.

\textbf{Def.} \ \ x \in X \ is \ a \ smooth \ point \ if \ \ O_{X,x} \ is \ regular. \ \ If \ x \ is \ not \ a \ smooth \ point \ is \ called \ a \ singular \ point. \ \ Basically \ singular \ points \ correspond \ to \ points \ where \ the \ Jacobian \ is \ "\text{wrong}" \ \ (ie, \ has \ strange \ rank \ or \ something).

\textbf{Def.} \ \ The \ tangent \ sheaf \ of \ \ X \ is \ \ coHom_{O_X} (\Omega^1_X, O_X).

\textbf{Aside.} \ \ If \ \ \mathcal{F}, \mathcal{G} \ are \ sheaves \ of \ \ O_X\text{-modules}, \ then \ \ coHom_{O_X} (\mathcal{F}, \mathcal{G}) \ is \ the \ sheaf\footnote{not \ obvious \ that \ it \ is \ a \ sheaf} \ \ \text{mapping} \ \ \mathcal{U} \mapsto Hom_{O_X(U)}(\mathcal{F}(U), \mathcal{G}(U)).

So \(T_{X,x} = Hom_{O_{X,x}} (\Omega^1_{X,x}, O_{X,x}) \).

\section{Curves}

\textbf{Def.} \ \ A \ curve \ is \ a \ variety \ of \ dimension \ 1.

This is rather abstract as we’ve done things.

\textbf{Theorem.} \ \ The \ functor \ from \ the \ category \ of \ complete \ smooth \ curves \ with \ non-constant \ morphisms \ to the \ category \ of \ finitely \ generated \ field \ extensions \ \(k \to K \) \ of \ transcendence \ degree \ 1, \ with \ \(k \)-algebra morphisms \ is \ defined \ as \ follows.

\(C \to k(C) \). \ \ Clearly \ \(k(C) \) has \ transcendence \ degree \ 1 \ since \ \(C \) has \ dimension \ 1 \ (this \ was \ our \ original \ definition \ of \ dimension).

\(\ \) (1) This \ functor \ is \ an \ equivalence \ of \ categories. \ Furthermore, \ (2) every \ complete \ smooth \ curve \ is \ projective.

\textbf{Sketch \ of \ proof.} \ \ If \ we \ have \ \(p \in C \), \ what \ do \ we \ know \ about \ \(O_{C,p} \)? \ It’s \ a \ DVR, \ thanks \ to \ smoothness \ and \ dimension 1. Also, \ it \ sits \ inside \ \(k(C) \). \ This \ will \ give \ a \ bijection \ between \ the \ points \ of \ \(C \) and \ DVRs \ in \ \(k(C) \). \ It \ turns \ out \ this \ captures \ everything; \ given \ a \ field, \ the \ curve \ will \ be \ the \ set \ of \ DVRs \ in \ the \ field

\textbf{Aside \ about \ Number \ Theory.} \ \ If \ \(K \) is \ a \ number \ field, \ then \ \(O_K \) \ is \ the \ integral \ closure \ of \ \(Z \), \ then \ every \ prime \ in \ \(O_K \) \ corresponds \ to \ a \ valuation \ ring \ in \ \(K \). \ For \ example, \ \(K = \mathbb{Q}_5 \), \ \(O_K = \mathbb{Z} \), \ then \ for \ every \ \(q \in K, v_p(q) = ord_p(q) \). \ If \ this \ makes \ any \ sense \ to \ anyone.

\textbf{Def.} \ \ If \ \(K \) is \ a \ field, \ \(G \) a \ totally \ ordered \ group, \ then \ a \ \text{valuation} \ is \ a \ map \ \(v : K - \{ 0 \} \to G \) \ such \ that \ \(v(xy) = v(x) + v(y) \) \ and \ \(v(x + y) \geq \min\{ v(x), v(y) \} \). \ For \ us, \ the \ key \ example \ will \ be \ \(K = k(C), p \in C, v_p(f) \) \ is \ the \ order \ of \ the \ zero \ / \ pole \ at \ \(p \) \ of \ \(f \). \ For \ instance, \ if \ \(C = \mathbb{A}^1 \), \ then \ \(k(C) = k(t) \). \ If \ \(f \in k(t) \) \ then \ \(f = \alpha_1 t^r + \alpha_2 t^{r+1} + \ldots \) \ for \ some \ \(r \), \ so \ \(v(f) = r \).

\(R_v = \{ x : v(x) \geq 0 \} \cup \{ 0 \} \) and \ \(m_v = \{ x | v(x) > 0 \} \); \ these \ make \ a \ local \ ring.
\(v \) is discrete if we can take \(G = \mathbb{Z} \). In general, if \(C \) is a smooth curve, \(p \in C \), then \(v_p : k(C) \setminus \{0\} \to \mathbb{Z}; v_p : O_{C,p} \setminus \{0\} \to \mathbb{Z}, \) where \(v_p(f) = \max_n\{f \in m_p^n\} \). \(v_p(f/g) = v_p(f) - v_p(g) \).

Def. If \(K \) is a field, \(A, B \subset K \) local rings, we say that \(B \) dominates \(A \) if \(A \subset B \) and \(m_A = A \cap m_B \).

Theorem. Valuation rings are exactly the maximal local rings in \(K \) with respect to domination. [fact from AM]. We do not prove this here.

Let \(k \to K \) be a field extension of transcendence degree 1. Let \(C_K \) be the set of DVRs in \(K \). Say \(U \subset C_K \) is open if it is cofinite or if \(U = \emptyset \). Define \(O_{C_K}(U) \) to be \(\cap_{v \in \mathfrak{U}} O_v \), where \(O_v \) refers to the DVR corresponding to the valuation \(v \). We can think of elements of \(O_v \) as functions, as \(f(v) \) is the image of \(f \) in \(O_v/m_v = k \).

Now we need to show that \((C_K, O_{C_K}) \) is a smooth curve.

Lemma. Say \(f \in K \). Then \(\{v \in C_K | f \notin O_v \} \) is a finite set.

Pf. We have a fact: \(\{v \in C_K | f \notin O_v \} = \{v \in C_K | 1/f \in m_v \} \). We know that \(f \notin k \) or this set would be empty and we’d be done. Write \(g = 1/f \). Let \(B \) be the integral closure of \(k[g] \subset K \). \(B \) corresponds to a smooth curve \(C \) because every local ring is regular (this is from property of Dedekind domains...)

If \(g \in m_v \), we get \(m_v \subset B \to O_v \to \text{eval}k \) which corresponds to points in \(V(g) \subset C \), so it’s finite.

This also shows \((C_K, O_{C_K}) \) is a variety. Say \(v \in C_K \). Choose \(g \in O_v \) non-zero. This corresponds to a smooth curve \(C, k(C) = K \), where \(\{v | R_v = O_{C,p}, p \in C \} \) is an open set around \(v \).

Lemma. Say \(Y \) is an affine variety, \(P, Q \in Y \) and say \(O_{Y,P} \subset O_{Y,Q} \subset k(Y) \). Then \(P = Q \). [Proof ommitted]

Out of time.