Let Z be an irreducible closed subset in an algebraic variety X. Show that if $\dim(Z) = \dim(X)$ then Z is a component of X.

Let Y be a closed subvariety of dimension r in \mathbb{P}^n.

(a) Suppose that Y can be presented as the set of common zeroes of q homogeneous polynomials. Show that $r \geq n - q$.

(b) Show that every irreducible closed subvariety in \mathbb{P}^n is a component in a set theoretic complete intersection of the same dimension.

(c) Show that the twisted cubic curve in \mathbb{P}^3 (see problem 2 of problem set 2) is a set theoretic complete intersection.

(d) (Optional bonus problem) Show that the twisted cubic curve in \mathbb{P}^3 is not a strict complete intersection.

Let C be a curve in \mathbb{P}^2, x be a point in C and L a line passing through x. Let m be the multiplicity of C at x and M the multiplicity of intersection of C and L at x. Show that $m \leq M$ and that for given C, x the equality $m = M$ holds for all but finitely many lines L as above.

Prove Bezout Theorem for two curves of degrees d_1, d_2 in \mathbb{P}^2 with no common components.

(a) Assuming $d_1 = 1$.

(b) Assuming $d_1 = 2$ and the first curve is irreducible; you can also assume that characteristic of the base field is different from two.

(5) (Optional bonus problem) Recall from the lecture that Grassmannian $Gr(2, 4)$ is isomorphic to a quadric in \mathbb{P}^5. Use this to show that given four lines in \mathbb{P}^3, the number of lines intersecting each of the four lines is either infinite or equal to one or two.
[Hint: Check that for a line $L \subset \mathbb{P}^3$ the set of lines intersecting L is parametrized by $Gr(2, 4) \cap H$ for a hyperplane $H \subset \mathbb{P}^5$, thus the answer is the number of points in the intersection $L \cap Gr(2, 4)$ where $L \subset \mathbb{P}^5$ is a linear subspace of dimension one or higher. Check that the intersection is infinite unless L is a line and refer to problem 3(a) from problem set 2].