(1) Let \(f : \mathbb{A}^1 \to \mathbb{A}^1 \) be a finite map.
 (a) Prove that \(y \in \mathbb{A}^1 \) is a ramification point iff the graph of \(f \) has an intersection with multiplicity \(m > 1 \) with the fiber of the second projection \(\mathbb{A}^1 \times \{y\} \).
 (b) Show that if the base field \(k \) has characteristic zero then \(f \) has a ramification point unless \(f \) is an isomorphism.
 [In fact, this is true more generally for a finite morphism from an irreducible curve to \(\mathbb{A}^1 \)].
 (c) Show that the Artin-Schreier map \(f(x) = x^p - x, p = \text{char}(k) \) has no ramification points.

(2) For an algebraic variety \(X \) over a field \(k \) of characteristic \(p \) the Frobenius twist \(X' \) of \(X \) is defined as follows.
\[X' = X \text{ as a topological space. A function } f \text{ on } U' \subseteq X' \text{ is regular iff } f(x) = \phi(x)^p \text{ where } \phi \text{ is a regular function on } U = U' \subseteq X. \]
\[\text{The identity map } X \to X' \text{ defines a morphism } Fr : X \to X' \text{ called the Frobenius morphism.} \]
[Notice though that it does not define a morphism from \(X' \) to \(X \).]
 (a) Check that if \(X \) is a closed subvariety in \(\mathbb{A}^n \) or \(\mathbb{P}^n \) whose ideal is generated by polynomials with coefficients in \(\mathbb{F}_p \), then \(X' \cong X \). Moreover, we have an isomorphism such that that composition \(X \xrightarrow{Fr} X' \cong X \) is given by \((x_i) \mapsto (x_i^p) \).
 (b) Let \(X \) be a normal irreducible variety of dimension \(n \). Prove that \(Fr : X \to X' \) is finite, find its degree and prove that every point is its ramification point.
 [Hint: reduce to the case of \(X = \mathbb{A}^n \)].
 (c) Describe the intersection points of the graph of Frobenius \(Fr : \mathbb{A}^1 \to \mathbb{A}^1 \) with the diagonal and check that each one has multiplicity one.

(3) Let \(X \) be the line with a double point at zero, thus we have a map \(X \to \mathbb{A}^1 \) which is an isomorphism over \(\mathbb{A}^1 \setminus \{0\} \) and the preimage of 0 consists of two points.
 (a) Let \(Y = \mathbb{A}^2 \setminus \{0\} \). Show that the map \(m : Y \to \mathbb{A}^1, m(x,y) = xy \) can be lifted to an onto map \(Y \to X \); moreover, there are two distinct such liftings.
 (b) Describe the closure of the diagonal in \(X^2 \) and \(X^3 \). More precisely, define a map from that closure to \(\mathbb{A}^1 \), which is an isomorphism over \(\mathbb{A}^1 \setminus \{0\} \) and count the number of points in the preimage of zero.

(4) \(X \subseteq \mathbb{A}^{n+1} \) is the zero set of a polynomial \(P \) which is irreducible and has the form \(P = P_d + P_{d+1} \) where \(P_d, P_{d+1} \) are nonzero homogeneous polynomials of degrees \(d, d+1 \) respectively. Prove that \(X \) is birationally equivalent to \(\mathbb{A}^n \).