Lecture 2: Affine Varieties

Side Remark Recall that we introduced three types of questions in the last lecture: counting over \(\mathbb{C} \), counting over \(\mathbb{F}_q \), and the slope of the set of solutions over \(\mathbb{C} \). It is worth pointing out that there is indeed a connection between the two latter types, as sketched out by the Weil conjectures.

Last time we defined Spec \(A \), where \(A \) is a finitely generated \(k \)-algebra with no nilpotents. Namely, Spec \(A = \text{Hom}_{k-\text{alg}}(A,k) = \{ \text{maximal ideals in } A \} \). Zariski closed set are defined in [Kem93]. Now recall that there is a bijection between Zariski closed subsets of Spec \(A \) and the radical ideals of \(A \). Suppose \(Z_1, Z_2 \) correspond to \(I_1, I_2 \), then \(Z_1 \cup Z_2 \) corresponds to \(I_1 \cap I_2 \). Note that \(I_1 + I_2 \) may not be reduced even if \(Z_1, Z_2 \) are varieties. For instance, let \(A = k[x,y] \), \(I_1 = (y-x^2) \), \(I_2 = (y) \), then \(A/(I_1 + I_2) = k[x]/x^2 \).

Theorem 1.1. Let \(k[U] \) denote functions associated with the set \(U \), as specified in last lecture. Then \(k[\text{Spec } A] \cong A \).

Proof. (This was done in [Kem93], Section 1.3-1.5.) Recall that as a set, Spec \(A \) is \(k - \text{Hom}(A,k) \), because each maximal ideal is the kernel of a homomorphism \(A \to k \) and vice versa. So there’s a map \(\phi : A \to k[\text{Spec } A] \) given by \(a \mapsto (x \mapsto x(a)) \), which we shall prove to be a bijection.

We first want the topological structure on Spec \(A \). This is given by \(Z(I) = \{ x \in \text{Spec } A \mid i(x) = 0 \forall i \in I \} \), where \(I \) is a subset of \(A \). One can directly check that this gives a topology on Spec \(A \). Next we need to make it a space with functions. The construction is given as: \(k[U] = \{ f : U \to k \mid \exists (U_\alpha, a_\alpha, b_\alpha), \bigcup \alpha U_\alpha = U, f|_{U_\alpha} = \phi(a_\alpha)/\phi(b_\alpha), \phi(b_\alpha)(x) \neq 0 \forall x \in U_\alpha \} \).

To show injectivity, let \(a \neq 0 \in A \), then we need to find some \(x : A \to k \) in Spec \(A \) such that \(\phi(a)(x) = x(a) \neq 0 \). To do so we’d need the following fact, the proof of which is standard commutative algebra:

Lemma 1 (Noether Normalization). Given \(A \) a finitely-generated \(k \)-algebra, there exists some algebraically independent elements \(X_1, \ldots, X_d \) over \(k \) such that \(A \) is a finitely generated \(k[X_1, \ldots, X_d] \)-module.

Apply this fact with the localization \(A_0 \), which is nonempty because \(A \) has no nilpotent (otherwise if \(1 = 0 \) in the localization ring, then \(a^n = a^n \cdot 1 = 0 \), and is finitely generated as we just need to add \(1/a \) to \(A \). Thus we get some \(X_1, \ldots, X_d \) such that \(A_0 \supseteq B = k[X_1, \ldots, X_d] \), then there is a surjection \(\psi : k - \text{Hom}(A_0, k) \to k - \text{Hom}(B, k) \). Let \(\varphi \neq 0 \in k - \text{Hom}(B, k) \), and let \(\psi(\varphi) = \varphi \), and let \(x = A \to A_0 \).

Now we need surjectivity. Take \(f \in k[\text{Spec } A] \) and we need to show it is in \(A \). Assume the data is given by \((U_\alpha, a_\alpha, b_\alpha) \), where we can assume that each \(U_\alpha = D(c_\alpha) \). By the replacement \(a_\alpha \to a_\alpha c_\alpha \), \(b_\alpha \to b_\alpha c_\alpha \), one can assume that \(U_\alpha = D(b_\alpha) \). Since the \(D(b_\alpha) \) sets cover Spec \(A \), we know that the ideal generated by \(\{ b_\alpha \} \) corresponds to empty set, thus by Nullstellensatz (c.f. [Kem93], Theorem 1.4.5), there must be some finite set \(b_1, \ldots, b_m \) and some constants \(z_1, \ldots, z_m \in A \) such that \(\sum_{i=1}^m z_i b_i^2 = 1 \in A \). Now \(b_\alpha f \) agrees with \(a_\alpha b_\alpha \) both on \(U_\alpha \) and its complement, so they are equal in \(A \), which means \(f = f \cdot 1 = \sum_i z_i (f b_i^2) = \sum_i z_i a_i b_i \in A \).

Note this last part can also give us the following:

Proposition 1. Spec \(A \) is quasi-compact for any commutative ring \(A \).

Proof. Take a covering \(X = \bigcup U_\alpha \), then can pick \(U_{f_\alpha} \subseteq U_\alpha \), then we have \((f_\alpha) = 1 \), and thus there’s a finite subset \((f_{d_1}, \ldots, f_{d_n}) = 1 \).

What we really want to say is:

Theorem 1.2. Given a space of functions \(X \), \(X \) is an affine variety if and only if \(X = \text{Spec } A \) for a finitely generated commutative ring \(A \) with no nilpotents.

Proof. Let’s show that Spec \(A \) is affine; the other direction will be done in the next lecture. Let \(X \) be any space with functions, then we need to show that \(\ast : \text{Morphism}(X, \text{Spec } A) \to k - \text{Hom}(A,k[X]) \) is injective and surjective. For injectivity, let \(f : X \to \text{Spec } A \) be a morphism and let \(x \) be any point on \(X \), then \(\delta_{f(x)} \),
the evaluation map at \(f(x) \), is given by \(\delta_f(x) = a(f(x)) = (f^*a)(x) \) for \(a \in A \), i.e. \(f(x) \), equivalently \(\delta_f(x) \), is specified by \(x \) and \(f^* \). On the other hand, define \(\ast^{-1} \) by \(\delta_{\ast^{-1}}(g)(x) = \delta_x \circ g \), then one can check this gives a well-defined inverse to \(\ast \) and thus \(\ast \) is bijective.

Definition 1. An algebraic variety over \(k \) is a space with functions which is a finite union of open subspaces, each one is an affine variety.

Lemma 2. A closed subspace in an affine variety is also affine, and global regular functions restrict surjectively.

Proof. \(X = \text{Spec} \ A, Z = Z_I, I \) is a radical. Then \(Z_I \cong \text{Spec}(A/I) \). Surjectivity follows from the fact that \(k[\text{Spec} \ A] = A \). \(\square \)

Corollary 1. A closed subspace of a variety is a variety.

Theorem 1.3 (Hilbert Basis Theorem). \(k[x_1, \ldots, x_n] \), and hence any finitely generated \(k \)-algebra is Noetherian.

Corollary 2. An algebraic variety is a Noetherian topological space (that is, every descending chains of closed subsets terminate; equivalently, every open subset is quasicompact).

Corollary 3. An open subspace of an algebraic variety is an algebraic variety. (Contrast with affine variety.)

Proof. Need to check that an open subset of an affine variety is covered by finitely many affine varieties. This follow from quasi-compactness. \(\square \)

Combine the two corollaries above, we see that a locally closed subspace (intersection of open and closed) of an algebraic variety is again a variety. However, the union of an open set and a closed set need not be a variety. For an counterexample, consider \((A^2 - \{ x = 0 \}) \cup \{ 0 \} \).

Definition 2 (Projective Space). Topologically, the projective space \(\mathbb{P}^n \) is given by the quotient topology \(\mathbb{A}^{n+1} - \{ 0 \} / (x_0, \ldots, x_n) \sim (\lambda x_0, \ldots, \lambda x_n) \forall \lambda \neq 0 \). A function on \(U \subseteq \mathbb{P}^n \) is regular if its pullback by \(\mathbb{A}^{n+1} - \{ 0 \} \xrightarrow{\pi} \mathbb{P}^n \) is regular on \(\pi^{-1}(U) \).

References
