Let X be as from last time, i.e. equipped with maps $f : X \to B, g : X \to \mathbb{P}^1$. Assume $\text{char}(k) \neq 2,3$ and let $S = \{ c \in \mathbb{P}^1 | F_c \text{ is multiple}\}$. If $c \in \mathbb{P}^1 \setminus S, f_c : F'_c \to B$ is an étale morphism. Then we have the map $f^*_c : \text{Pic}^0(B) \to \text{Pic}^0(F'_c)$, and $\text{Pic}^0(F'_c)$ acts canonically on F'_c. Thus, we get an action $B \times F'_c \to F'_c$ for each $c \in \mathbb{P}^1 \setminus S$, and thus actions

$$\sigma_0 : B \times g^{-1}(\mathbb{P}^1 \times S) \to g^{-1}(\mathbb{P}^1 \setminus S), \sigma : B \times X \to X$$

Explicitly, if $b \in B, x \in F'_c \subset X$ with $c \in \mathbb{P}^1 \setminus S$, then $b \cdot X = y$, where $f^* \mathcal{O}_B(b - b_0) \otimes \mathcal{O}_{F'_c}(s) = \mathcal{O}_{F'_c}(y)$. Here b_0 is a fixed base point on B, which acts as the zero element of the elliptic curve B. Apply the norm $N_{F'_c/B}$ to get

$$\mathcal{O}_B(nb - nb_0 + f(x)) - \mathcal{O}_B(f(y))$$

where $n = \deg f_c = F_b \cdot F'_c$. We thus obtain commutative diagrams

$$(2) \quad \begin{array}{ccc} X & \xrightarrow{b} & X \\ f \downarrow & & \downarrow f \\ B & \xrightarrow{t_{nb}} & B \end{array}$$

(where t_{nb} is translation by nb) and

$$(3) \quad \begin{array}{ccc} B \times X & \xrightarrow{\alpha} & X \\ \text{id}_{B \times X} \downarrow & & \downarrow f \\ B \times B & \xrightarrow{(b,b') \mapsto nb+b'} & B \end{array}$$

Let $B_0 = F_{b_0}$ and $A_n = \text{Ker } n_B : B \to B$ a group subscheme of B. We see that the fibers of f are invariant under the action of A_n on X. In particular, A_n acts on B_0. Denote this by $\alpha : A_n \to \text{Aut } (B_0)$, where $\text{Aut } (B_0)$ is the group scheme of automorphisms of B_0. The action of B on X gives $\tau : B \times B_0 \to X$, which
completes the diagram

\[
\begin{array}{ccc}
B \times B_0 & \xrightarrow{\tau} & X \\
& \downarrow f & \\
& B & \\
\end{array}
\]

(4)

Note that we can’t use \(b_0 \) for an arbitrary element of \(B_0 \), since we already used it for a base point of \(B_0 \). So replace it by \(b \in B \) and \(b' \in B_0 \). On can check that \(\tau(b, x) = \tau(b', x') \Leftrightarrow \sigma(b - b', x) = x' \). Thus, \(X \) is isomorphic to the quotient of \(B \times B_0 \) by the action of \(A_n \) given by \(a \cdot (b, b') = (b + a, \alpha(a)(b')) \) for \(a \in A_n, b \in B, b' \in B_0 \). We can substitute the curve \(B/\text{Ker} \)(\(a \)) for \(B \) to get the following theorem:

Theorem 1. Every hyperelliptic surface \(X \) has the form \(X = B_1 \times B_0/A \), where \(B_0, B_1 \) are elliptic curves, \(A \) is a finite group subscheme of \(B_1 \), and \(A \) acts on the product \(B_1 \times B_0 \) by \(a(b, b') = (b + a, \alpha(a)(b')) \) for \(a \in A, b \in B_1, b' \in B_0 \), and \(\alpha : A \to \text{Aut} \)(\(B_0 \)) an injective homomorphism. The two elliptic fibrations \(X \) are given by

\[
\begin{align*}
\text{(5)} \quad f : B_1 \times B_0/A \to B_1/A &= B, \\
g : B_1 \times B_0/A \to B_0/\alpha(A) &\cong \mathbb{P}^1
\end{align*}
\]

We can classify these, using the structure of a group of automorphisms of an elliptic curve \(\text{Aut} \)(\(B_0 \)) = \(B_0 \times \text{Aut} \)(\(B_0, 0 \)) (the group of translations and the group of automorphisms fixing \(0 \) respectively). Explicitly, we have that

\[
\text{(6) } \quad \text{Aut} \)(\(B_0, 0 \)) \cong \begin{cases}
\mathbb{Z}/2\mathbb{Z} & j(B_0) \neq 0, 1728 \\
\mathbb{Z}/4\mathbb{Z} & j(B_0) = 1728, \quad \text{i.e. } B_0 \cong \{y^2 = x^3 - x\} \\
\mathbb{Z}/6\mathbb{Z} & j(B_0) = 0, \quad \text{i.e. } B_0 \cong \{y^2 = x^3 - 1\}
\end{cases}
\]

Now \(\alpha(A) \) can’t be a subgroup of translations, else \(B_0/\alpha(A) \) would be an elliptic curve, not \(\mathbb{P}^1 \). Let \(a \in A \) be s.t. \(\alpha(a) \) generates the cyclic group \(\alpha(A) \) in \(\text{Aut} \)(\(B_0)/B_0 \cong \text{Aut} \)(\(B_0, 0 \)). It is easy to see that \(\alpha(a) \) must have a fixed point. Choose that point to be the zero point of \(B_0 \). Now \(\alpha(A) \) is abelian, so is a direct product \(A_0 \times \mathbb{Z}/n\mathbb{Z} \). \(A_0 \) is a subgroup of translations of \(B_0 \) and thus a finite subgroup scheme of \(B_0 \). Since \(A_0 \) and \(\alpha(A) \) commute, we must have \(A_0 \subset \{b' \in B_0 | \alpha(a)(b') = b'\} \). We thus have the following possibilities:

(a) \(n = 2 \) \(\implies \) the fixed points are \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \)

(b) \(n = 3 \) \(\implies \) the fixed points are \(\mathbb{Z}/3\mathbb{Z} \)

(c) \(n = 4 \) \(\implies \) the fixed points are \(\mathbb{Z}/2\mathbb{Z} \)

(d) \(n = 6 \) \(\implies \) the fixed points are \(\{0\} \)

We thus obtain the following classification (Bagnera-de Franchis):

(a1) \((B_1 \times B_0)/(\mathbb{Z}/2\mathbb{Z}), \) with the generator \(a \) of \(\mathbb{Z}/2\mathbb{Z} \subset B_1[2] \) acting on \(B_1 \times B_0 \) by \(a(b_1, b_0) = (b_1 + a, -b_0) \).
(a2) \((B_1 \times B_0)/(\mathbb{Z}/2\mathbb{Z})^2\), with the generators \(a\) and \(g\) of \((\mathbb{Z}/2\mathbb{Z})^2 \subset (B_1[2])^2\) acting by \(a(b_1, b_0) = (b_1 + a, -b_0), g(b_1, b_0) = (b_1 + g, b_0 + c)\) for \(c \in B_0[2]\).

(b1) \((B_1 \times B_0)/(\mathbb{Z}/3\mathbb{Z})\), with the generator \(a\) of \(\mathbb{Z}/3\mathbb{Z} = B_1[3]\) (s.t. \(\alpha(a) = \omega \in \text{Aut}(B_0, 0)\) an automorphism of order 3 [only when \(j(B_0) = 0\)] acting on \(B_1 \times B_0\) by \(a(b_1, b_0) = (b_1 + a, \omega(b_0))\).

(b2) \((B_1 \times B_0)/(\mathbb{Z}/3\mathbb{Z})^2\), with the generators \(a\) and \(g\) of \((\mathbb{Z}/3\mathbb{Z})^2 = (B_1[3])^2\) acting by \(a(b_1, b_0) = (b_1 + a, \omega(b_0)), g(b_1, b_0) = (b_1 + g, b_0 + c)\) for \(c \in B_0[3]\), is fixed by \(\omega\), i.e. \(\omega(c) = c\).

(c1) \((B_1 \times B_0)/(\mathbb{Z}/4\mathbb{Z})\), with the generator \(a\) of \(\mathbb{Z}/4\mathbb{Z} \subset B_1[4]\) (s.t. \(\alpha(a) = i \in \text{Aut}(B_0, 0)\) an automorphism of order 4 [only when \(j(B_0) = 1728\)] acting on \(B_1 \times B_0\) by \(a(b_1, b_0) = (b_1 + a, i(b_0))\).

(c2) \((B_1 \times B_0)/(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})\), with the generators \(a\) and \(g\) of \(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = B_1[4] \times B_1[2]\) acting by \(a(b_1, b_0) = (b_1 + a, i(b_0)), g(b_1, b_0) = (b_1 + g, b_0 + c)\) for \(c \in B_0[2]\).

(d) \((B_1 \times B_0)/(\mathbb{Z}/6\mathbb{Z})\), with the generator \(a\) of \(\mathbb{Z}/6\mathbb{Z} = B_1[6]\) acting on \(B_1 \times B_0\) by \(a(b_1, b_0) = (b_1 + a, -\omega(b_0))\).

1. Classification (contd.)

Our first goal is to prove the following theorem:

Theorem 2. Let \(X\) be a minimal surface. Then

(a) \(\exists\) an integral curve \(C\) on \(X\) s.t. \(K \cdot C < 0 \iff \kappa(X) = -\infty \iff p_g = p_0 = 0 \iff p_{12} = 0\).

(b) \(K \cdot C = 0\) for all integral curves \(C\) on \(X\) (i.e. \(K \equiv 0\)) \(\iff \kappa(X) = 0 \iff 4K \sim 0\) or \(6K \sim 0 \iff 12K \sim 0\).

(c) \(K^2 = 0, K \cdot C \geq 0\) for all integral curves \(C\) on \(X\), and \(\exists\) an integral curve \(C'\) with \(K \cdot C' > 0 \iff \kappa(X) = 1 \iff K^2 = 0, |4K|\) or \(|6K|\) contains a strictly positive divisor \(\iff K^2 = 0, |12K|\) has a strictly positive divisor.

(d) \(K^2 > 0, K \cdot C \geq 0\) for all integral curves \(C\) on \(X\) \(\iff \kappa(X) = 2\), in which case \(|2K| = \emptyset\).

We already showed that the 4 classes (given by the first clause) are exhaustive and mutually exclusive. We also proved the equivalences in (a). As a preliminary, we need some results on elliptic and quasielliptic fibrations. Recall that an effective divisor \(D = \sum_{i=1}^r n_iE_i > 0\) is said to be of canonical type if \(K_i \cdot E_i = D \cdot E_i = 0\forall i\) (if \(X \to B\) is an elliptic/quasielliptic fibration, then every fiber has this property). If \(D\) is also connected and \(gcd(n_1, \ldots, n_r) = 1\), then we say that \(D\) is an indecomposable curve or a divisor of canonical type.

Proposition 1. Let \(D = \sum n_iE_i > 0\) be an indecomposable curve of canonical type on a minimal surface \(X\), and let \(L\) be an invertible \(\mathcal{O}_D\) module. If \(\deg(L \otimes \mathcal{O}_{E_i}) = 0\) for all \(i\), then \(H^0(D, L) \neq 0\) iff \(L \cong \mathcal{O}_D\). Also, \(H^0(D, \mathcal{O}_D) \cong k\).
Proof. It is enough to show that every nonzero section \(s \) of \(H^0(D, L) \) generates \(L \), i.e. gives an isomorphism \(\mathcal{O}_D \cong L \). Then \(H^0(D, \mathcal{O}_D) \) is a field containing \(k \) and is finite dimensional over \(k \). Since \(k \) is algebraically closed by assumption, we have the proposition. So let \(s \in H^0(D, L) \) be nonzero, and let \(s_i = s|_{E_i} \in H^0(E_i, L \otimes \mathcal{O}_{E_i}) \). The fact that \(\deg (L \otimes \mathcal{O}_{E_i}) = 0 \) implies that either \(s_i \) is identically 0 on \(E_i \) or \(s_i \) doesn’t vanish anywhere on \(E_i \) (i.e. it generates \(L \otimes \mathcal{O}_{E_i} \)). If \(s_i \) is identically 0 on \(E_i \), then \(s_j \) must be 0 on \(E_i \) for every \(E_j \) that intersects \(E_i \). This implies that \(s_j \) vanishes at a point of \(E_j \) and thus on all of \(E_j \) for all \(j \) by the connectedness of \(D \). So if \(s \) doesn’t vanish identically on \(E_i \) for all \(i \), then \(s \) doesn’t vanish anywhere on \(D \), and we again have the desired isomorphism.

So suppose that \(s_i \) is identically 0 on \(E_i \) for every \(i \). We’ll show that \(s \neq 0 \) gives a contradiction. Let \(k_i \) be the order of vanishing of \(s_i \) along \(E_i \), \(1 \leq k \leq n_i \). Whenever \(k_i < n_i \), \(s \) defines a nonzero section of \(L \otimes \mathcal{O}_X(\mathcal{O}_X(-k_iE_i)/\mathcal{O}_X((-k_i+1)E_i)) \). We claim that this section vanishes at every point \(p \in E_i \) to order at least the intersection multiplicity \((E_i, \sum_{j \neq i} k_j E_j; p) \). To see this, note that locally, if \(E_i \) only intersects one component \(E_j \), \(j \neq i \) at \(p \), we can let \(A = \mathcal{O}_{X,p} \) and \(t_i = 0, t_j = 0 \) cut out \(E_i \) and \(E_j \) respectively at \(p \). We obtain an exact sequence

\[
0 \rightarrow H^0(E_i, L \otimes \mathcal{O}_X(-k_iE_i) \otimes \mathcal{O}_{E_i}) \rightarrow H^0(L \otimes \mathcal{O}_{(k_i+1)E_i}) \rightarrow H^0(L \otimes \mathcal{O}_{K_iE_i})
\]

from the exact sequence

\[
0 \rightarrow \mathcal{O}_X(-k_iE_i) \otimes \mathcal{O}_{E_i} \rightarrow \mathcal{O}_{(k_i+1)E_i} \rightarrow \mathcal{O}_{K_iE_i} \rightarrow 0
\]

after tensoring by \(L \). The local version is

\[
s \in A/(t_i^{m_i}t_j^{n_j})
\]

\[
0 \rightarrow A/t_i \rightarrow A/t_i^{k_i+1} \rightarrow A/t_i^{k_i} \rightarrow 0
\]

We can write \(s = t_i^{k_i} \alpha_i = t_j^{k_j} \alpha_j, \alpha_i, \alpha_j \in A \) since the order of vanishing of \(s \) along \(t_i \) is \(k_i \). Since \(t_i, t_j \) is an \(A \)-regular sequence, we get \(\alpha_i = t_i^{k_j} \beta, \alpha_j = t_i^{k_j} \beta \), for some \(\beta \in A \). The section \(s \) is represented by

\[
t_i^{k_i}t_j^{k_j} \beta = t_j^{k_j} \beta \mod t_i
\]

in \(A/t_i \) to the left of the diagram. Then

\[
\text{ord}_p(t_j^{k_j} \beta) = \dim (A/(t_i, t_j^{k_j} \beta)) \geq \dim (A/(t_i, t_j^{k_j})) = \text{int.mult.}(E_i, k_j E_j; P)
\]
In general, one can use the Chinese remainder theorem to get the inequality for many points P. So if $k_i < n_i$ then we have

$$ (t_i, \sum_{j \neq i} k_j E_j) \leq \deg E_i (L \otimes \mathcal{O}_X(-k_i E_i) \otimes \mathcal{O}_{E_i}) $$

$$ \leq \deg (\mathcal{O}_X(-E_i)/\mathcal{O}_X(-2E_i))^{k_i} = -k_i E_i^2 \leq 0 $$

On the other hand, if $k_i = n_i$, then $E_i \cdot D = 0$ gives $E_i \cdot \sum k_j E_j = -(E_i, \sum (n_j - k_j) E_j) \leq 0$ since $k_j \leq n_j$ and $E_i \cdot E_j \geq 0$. So letting $D_1 = \sum k_j E_j$, we have $D_1 \cdot E_i \leq 0$ for all i. But

$$(D_1, D) = \sum k_i (E_i, D) = 0$$

$$ \implies D_1 \cdot E_i = 0 \forall i$$

$$ \implies D_1^2 = 0$$

$$ (13) \implies D_1 \text{ is a rational multiple of } D$$

$$ \implies D_1 = D$$

$$ \implies k_i = n_i \forall i \text{ (since } k_i \leq n_i \text{ and } \gcd \{n_i\} = 1)$$

$$ \implies s \equiv 0$$

a contradiction. \qed