CHAPTER II

A. On the Geometry of Lie Groups

A.1. (i) follows from \(\exp \text{Ad}(x)tX = x \exp tX x^{-1} = L(x) R(x^{-1}) \exp tX \) for \(X \in \mathfrak{g}, \ t \in \mathbb{R} \). For (ii) we note \(J(x \exp tX) = \exp(-tX) x^{-1} \), so \(dJ_x(dL(x)eX) = -dR(x^{-1})eX \). For (iii) we observe for \(X_0, \ Y_0 \in \mathfrak{g} \)

\[\Phi(g \exp tX_0, h \exp sY_0) = g \exp tX_0 h \exp sY_0 = gh \exp t \text{Ad}(h^{-1}) X_0 \exp sY_0, \]

(Continued on next page.)
so
\[d\Phi(dL(g)X_0, dL(h)Y_0) = dL(gh)(\text{Ad}(h^{-1})X_0 + Y_0). \]

Putting \(X = dL(g)X_0, \ Y = dL(h)Y_0, \) the result follows from (i).

A.2. Suppose \(\gamma(t_1) = \gamma(t_2) \) so \(\gamma(t_2 - t_1) = e. \) Let \(L > 0 \) be the smallest number such that \(\gamma(L) = e. \) Then \(\gamma(t + L) = \gamma(t) \gamma(L) = \gamma(t). \)

If \(\tau_L \) denotes the translation \(t \to t + L, \) we have \(\gamma \circ \tau_L = \gamma, \) so
\[\dot{\gamma}(0) = d\gamma \left(\frac{d}{dt} \right)_0 = d\gamma \left(\frac{d}{dt} \right)_L = \dot{\gamma}(L). \]

A.3. The curve \(\sigma \) satisfies \(\sigma(t + L) = \sigma(t), \) so in A.2, \(\dot{\sigma}(0) = \dot{\sigma}(L). \)

A.4. Let \((p_n) \) be a Cauchy sequence in \(G/H. \) Then if \(d \) denotes the distance, \(d(p_n, p_m) \to 0 \) if \(m, n \to \infty. \) Let \(B_{e}(o) \) be a relatively compact ball of radius \(\varepsilon > 0 \) around the origin \(o = \{H\} \) in \(G/H. \) Select \(N \) such that \(d(p_n, p_m) < \frac{1}{4}\varepsilon \) for \(m \geq N \) and select \(g \in G \) such that \(g \cdot p_N = o. \) Then \((g \cdot p_m) \) is a Cauchy sequence inside the compact ball \(B_{e}(o), \) hence it, together with the original sequence, is convergent.

A.5. For \(X \in \mathfrak{g} \) let \(\tilde{X} \) denote the corresponding left invariant vector field on \(G. \) From Prop. 1.4 we know that (i) is equivalent to \(\nabla_{\tilde{X}}(Z) = 0 \) for all \(Z \in \mathfrak{g}. \) But by (2), §9 in Chapter I this condition reduces to
\[\langle Z, [\tilde{X}, Z] \rangle = 0 \quad (X, Z \in \mathfrak{g}) \]
which is clearly equivalent to (ii). Next (iii) follows from (ii) by replacing \(X \) by \(X + Z. \) But (iii) is equivalent to \(\text{Ad}(G) \)-invariance of \(B \) so \(Q \) is right invariant. Finally, the map \(J : x \to x^{-1} \) satisfies \(J = R(g^{-1}) \circ J \circ L(g^{-1}), \) so \(dJ_g = dR(g^{-1})_e \circ dJ_e \circ dL(g^{-1})_g. \) Since \(dJ_e \) is automatically an isometry, (v) follows.

A.6. Assuming first the existence of \(\nabla, \) consider the affine transformation \(\sigma : g \to \exp \frac{1}{2}Yg^{-1} \exp \frac{1}{2}Y \) of \(G \) which fixes the point \(\exp \frac{1}{2}Y \) and maps \(\gamma_1, \) the first half of \(\gamma, \) onto the second half, \(\gamma_2. \) Since
\[\sigma = L(\exp \frac{1}{2}Y) \circ J \circ L(\exp -\frac{1}{2}Y), \]
we have \(d\sigma_{\exp \frac{1}{2}Y} = -I. \) Let \(X^*(t) \in G_{\exp \frac{1}{2}Y} (0 \leq t \leq 1) \) be the family of vectors parallel with respect to \(\gamma \) such that \(X^*(0) = X. \) Then \(\sigma \) maps \(X^*(s) \) along \(\gamma_1 \) into a parallel field along \(\gamma_2 \) which must be the field \(-X^*(t)\) because \(d\sigma(X^*(\frac{1}{2})) = -X^*(\frac{1}{2}). \) Thus the map \(\sigma \circ J = L(\exp \frac{1}{2}Y) \circ R(\exp \frac{1}{2}Y) \) sends \(X \) into \(X^*(1), \) as stated in part (i). Part (ii) now follows from Theorem 7.1, Chapter I, and part (iii) from Prop. 1.4. Now (iv) follows from (ii) and the definition of \(T \) and \(R. \)
Finally, we prove the existence of \(\nabla \). As remarked before Prop. 1.4, the equation \(\nabla_X(Y) = \frac{1}{2}[\bar{X}, \bar{Y}] \ (X, Y \in g) \) defines uniquely a left invariant affine connection \(\nabla \) on \(G \). Since \(\bar{X}^{R(g)} = (\text{Ad}(g^{-1})X)^{\sim} \), we get

\[
\nabla_{\bar{X}}^{R(g)}(\bar{Y}^{R(g)}) = \frac{1}{2}\{\text{Ad}(g^{-1})[X, Y]\}^{\sim} = (\nabla_X(\bar{Y}))^{R(g)};
\]

this we generalize to any vector fields \(Z, Z' \) by writing them in terms of \(\bar{X}_i \) (1 \(\leq i \leq n \)). Next

\[
\nabla_JX(J\bar{Y}) = J(\nabla_X(\bar{Y})). \tag{1}
\]

Since both sides are right invariant vector fields, it suffices to verify the equation at \(e \). Now \(J\bar{X} = -\bar{X} \) where \(\bar{X} \) is right invariant, so the problem is to prove

\[
(\nabla_X(\bar{Y}))_e = -\frac{1}{2}[X, Y].
\]

For a basis \(X_1, \ldots, X_n \) of \(g \) we write \(\text{Ad}(g^{-1})Y = \sum_i f_i(g)X_i \). Since \(\bar{Y}_g = dR(g)Y = dL(g)\text{Ad}(g^{-1})Y \), it follows that \(\bar{Y} = \sum_i f_i\bar{X}_i \), so using \(\nabla_0 \) and Lemma 4.2 from Chapter I, \(\S 4 \),

\[
(\nabla_X(\bar{Y}))_e = (\nabla_X(\bar{Y}))_e = \sum_i (Xf_i)_e X_i + \frac{1}{2} \sum_i f_i(e)[\bar{X}, \bar{X}]_e
\]

Since \((Xf_i)(e) = \{(d/dt) f_i(\exp tX)\}_t=0 \) and since

\[
\left\{ \frac{d}{dt} \text{Ad}(\exp(-tX))(Y) \right\}_{t=0} = -[X, Y],
\]

the expression on the right reduces to \(-[X, Y] + \frac{1}{2}[X, Y] \), so (1) follows. As before, (1) generalizes to any vector fields \(Z, Z' \).

The connection \(\nabla \) is the \(0 \)-connection of Cartan-Schouten [1].

B. The Exponential Mapping

B.1. At the end of \(\S 1 \) it was shown that \(GL(2, \mathbb{R}) \) has Lie algebra \(\mathfrak{gl}(2, \mathbb{R}) \), the Lie algebra of all \(2 \times 2 \) real matrices. Since \(\det(e^{tx}) = \)
Prop. 2.7 shows that \(\mathfrak{sl}(2, \mathbb{R}) \) consists of all 2 \(\times \) 2 real matrices of trace 0. Writing

\[
X = a \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}
\]

a direct computation gives for the Killing form

\[
B(X, X) = 8(a^2 + bc) = 4 \text{Tr}(XX),
\]
whence \(B(X, Y) = 4 \text{Tr}(XY) \), and semisimplicity follows quickly.

Part (i) is obtained by direct computation. For (ii) we consider the equation

\[
e^X = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \quad (\lambda \in \mathbb{R}, \quad \lambda \neq 1).
\]

Case 1: \(\lambda > 0 \). Then \(\det X < 0 \). In fact \(\det X = 0 \) implies

\[
I + X = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix},
\]

so \(b = c = 0 \), so \(a = 0 \), contradicting \(\lambda \neq 1 \). If \(\det X > 0 \), we deduce quickly from (i) that \(b = c = 0 \), so \(\det X = -a^2 \), which is a contradiction. Thus \(\det X < 0 \) and using (i) again we find the only solution

\[
X = \begin{pmatrix} \log \lambda & 0 \\ 0 & -\log \lambda \end{pmatrix}.
\]

Case 2: \(\lambda = -1 \). For \(\det X > 0 \) put \(\mu = (\det X)^{1/2} \). Then using (i) the equation amounts to

\[
\cos \mu + (\mu^{-1} \sin \mu)a = -1, \quad (\mu^{-1} \sin \mu)b = 0,
\]

\[
\cos \mu - (\mu^{-1} \sin \mu)a = -1, \quad (\mu^{-1} \sin \mu)c = 0.
\]

These equations are satisfied for

\[
\mu = (2n + 1)\pi \quad (n \in \mathbb{Z}), \quad \det X = -a^2 - bc = (2n + 1)^2 \pi^2.
\]

This gives infinitely many choices for \(X \) as claimed.

Case 3: \(\lambda < 0, \lambda \neq -1 \). If \(\det X = 0 \), then (i) shows \(b = c = 0 \), so \(a = 0 \); impossible. If \(\det X > 0 \) and we put \(\mu = (\det X)^{1/2} \), (i) implies

\[
\cos \mu + (\mu^{-1} \sin \mu)a = \lambda, \quad (\mu^{-1} \sin \mu)b = 0,
\]

\[
\cos \mu - (\mu^{-1} \sin \mu)a = \lambda^{-1}, \quad (\mu^{-1} \sin \mu)c = 0.
\]
SOLUTIONS

Since $\lambda \neq \lambda^{-1}$, we have $\sin \mu \neq 0$. Thus $b = c = 0$, so $\det X = -a^2$, which is impossible. If $\det X < 0$ and we put $\mu = (-\det X)^{1/2}$, we get from (i) the equations above with \sin and \cos replaced by \sinh and \cosh. Again $b = c = 0$, so $\det X = -a^2 = -\mu^2$; thus $a = \pm \mu$, so

$$\cosh \mu \pm \sinh \mu = \lambda, \quad \cosh \mu \mp \sinh \mu = \lambda^{-1},$$

contradicting $\lambda < 0$. Thus there is no solution in this case, as stated.

B.2. The Killing form on $\mathfrak{sl}(2, \mathbb{R})$ provides a bi-invariant pseudo-Riemannian structure with the properties of Exercise A.5. Thus (i) follows from Exercise B.1. Each $g \in SL(2, \mathbb{R})$ can be written $g = k \rho$ where $k \in SO(2)$ and ρ is positive definite. Clearly $k = \exp T$ where $T \in \mathfrak{sl}(2, \mathbb{R})$; and using diagonalization, $\rho = \exp X$ where $X \in \mathfrak{sl}(2, \mathbb{R})$. The formula $g = \exp T \exp X$ proves (ii).

B.3. Follow the hint.

B.4. Considering one-parameter subgroups it is clear that g consists of the matrices

$$X(a, b, c) = \begin{pmatrix} 0 & c & 0 & a \\ -c & 0 & 0 & b \\ 0 & 0 & 0 & c \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad (a, b, c \in \mathbb{R}).$$

Then $[X(a, b, c), X(a_1, b_1, c_1)] = X(cb_1 - c_1 b, c_1 a - ca_1, 0)$, so g is readily seen to be solvable. A direct computation gives

$$\exp X(a, b, c) = \begin{pmatrix} \cos c & \sin c & 0 & c^{-1}(a \sin c - b \cos c + b) \\ -\sin c & \cos c & 0 & c^{-1}(b \sin c + a \cos c - a) \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Thus $\exp X(a, b, 2\pi)$ is the same point in G for all $a, b \in \mathbb{R}$, so \exp is not injective. Similarly, the points in G with $\gamma = n2\pi \ (n \in \mathbb{Z})$ $a^2 + b^2 > 0$ are not in the range of \exp. This example occurs in Auslander and MacKenzie [1]; the exponential mapping for a solvable group is systematically investigated in Dixmier [2].

B.5. Let N_0 be a bounded star-shaped open neighborhood of $0 \in g$ which \exp maps diffeomorphically onto an open neighborhood N_e of e in G. Let $N^* = \exp(\frac{1}{2}N_0)$. Suppose S is a subgroup of G contained in N^*, and let $s \neq e$ in S. Then $s = \exp X \ (X \in \frac{1}{2}N_0)$. Let $k \in \mathbb{Z}^+$ be such that $X, 2X, \ldots, kX \in \frac{1}{2}N_0$ but $(k + 1)X \notin \frac{1}{2}N_0$. Since N_0 is star-shaped, $(k + 1)X \in N_0^*$; but since $s^{k+1} \in N^*$, we have $s^{k+1} = \exp Y, Y \in \frac{1}{2}N_0$. Since \exp is one-to-one on N_0, $(k + 1)X = Y \in \frac{1}{2}N_0$, which is a contradiction.
C. Subgroups and Transformation Groups

C.1. The proofs given in Chapter X for \(SU^*(2n) \) and \(Sp(n, \mathbb{C}) \) generalize easily to the other subgroups.

C.2. Let \(G \) be a commutative connected Lie group, \((\bar{G}, \pi)\) its universal covering group. By facts stated during the proof of Theorem 1.11, \(\bar{G} \) is topologically isomorphic to a Euclidean group \(R^p \). Thus \(G \) is topologically isomorphic to a factor group of \(R^p \) and by a well-known theorem on topological groups (e.g. Bourbaki [1], Chap. VII) this factor group is topologically isomorphic to \(R^n \times T^m \). Thus by Theorem 2.6, \(G \) is analytically isomorphic to \(R^n \times T^m \).

For the last statement let \(\bar{\gamma} \) be the closure of \(\gamma \) in \(H \). By the first statement and Theorem 2.3, \(\bar{\gamma} = R^n \times T^m \) for some \(n, m \in \mathbb{Z}^+ \). But \(\gamma \) is dense in \(\bar{\gamma} \), so either \(n = 1 \) and \(m = 0 \) (\(\gamma \) closed) or \(n = 0 \) (\(\gamma \) compact).

C.3. By Theorem 2.6, \(I \) is analytic and by Lemma 1.12, \(dI \) is injective. Q.E.D.

C.4. The mapping \(\psi_g \) turns \(g \cdot N_0 \) into a manifold which we denote by \((g \cdot N_0)_x \). Similarly, \(\psi_{g'} \) turns \(g' \cdot N_0 \) into a manifold \((g' \cdot N_0)_y \). Thus we have two manifolds \((g \cdot N_0 \cap g' \cdot N_0)_x \) and \((g' \cdot N_0 \cap g' \cdot N_0)_y \) and must show that the identity map from one to the other is analytic. Consider the analytic section maps

\[\sigma_g : (g \cdot N_0)_x \to G, \quad \sigma_{g'} : (g' \cdot N_0)_y \to G \]

defined by

\[\sigma_g(g \exp(x_1X_1 + \ldots + x_rX_r) \cdot p_0) = g \exp(\pi_1X_1 + \ldots + \pi_rX_r), \]
\[\sigma_{g'}(g' \exp(y_1X_1 + \ldots + y_rX_r) \cdot p_0) = g' \exp(y_1X_1 + \ldots + y_rX_r), \]

and the analytic map

\[J_g : \pi^{-1}(g \cdot N_0) \to (g \cdot N_0)_x \times H \]

given by

\[J_g(z) = (\pi(z), [\sigma_g(\pi(z))]^{-1}z). \]

Furthermore, let \(P : (g \cdot N_0)_x \times H \to (g \cdot N_0)_x \) denote the projection on the first component. Then the identity mapping

\[I : (g \cdot N_0 \cap g' \cdot N_0)_y \to (g \cdot N_0 \cap g' \cdot N_0)_x \]

can be factored:

\[(g \cdot N_0 \cap g' \cdot N_0)_y \xrightarrow{\sigma_{g'}} \pi^{-1}(g \cdot N_0) \xrightarrow{J_g} (g \cdot N_0)_x \times H \xrightarrow{P} (g \cdot N_0)_x. \]

\[\dagger \text{See "Some Details," p. 586.} \]
In fact, if \(p \in g \cdot N_0 \cap g' \cdot N_0 \), we have
\[
p = g \exp(x_1X_1 + \ldots + x_rX_r) \cdot p_0 = g' \exp(y_1X_1 + \ldots + y_rX_r) \cdot p_0,
\]
so for some \(h \in H \),
\[
P(J_\sigma(\alpha(g)(p))) = P(J_\sigma(g' \exp(y_1X_1 + \ldots + y_rX_r))) = P(g' \exp(y_1X_1 + \ldots + y_rX_r), h) = P(g \exp(x_1X_1 + \ldots + x_rX_r), h) = g \exp(x_1X_1 + \ldots + x_rX_r) \cdot p_0.
\]
Thus \(I \) is composed of analytic maps so is analytic, as desired.

C.5. The subgroup \(H = G_2 \) of \(G \) leaves \(p \) fixed is closed, so \(G/H \) is a manifold. The map \(I : G/H \rightarrow M \) given by \(I(gH) = g \cdot p \) gives a bijection of \(G/H \) onto the orbit \(G \cdot p \). Carrying the differentiable structure over on \(G \cdot p \) by means of \(I \), it remains to prove that \(I : G/H \rightarrow M \) is everywhere regular. Consider the maps on the diagram

\[
\begin{array}{ccc}
G & \xrightarrow{\pi} & G/H \\
\downarrow & & \downarrow I \\
G/H & \xrightarrow{\beta} & M
\end{array}
\]

where \(\pi(g) = gH \), \(\beta(g) = g \cdot p \) so \(\beta = I \circ \pi \). If we restrict \(\pi \) to a local cross section, we can write \(I = \beta \circ \pi^{-1} \) on a neighborhood of the origin in \(G/H \). Thus \(I \) is \(C^\infty \) near the origin, hence everywhere. Moreover, the map \(d\beta_e : g \rightarrow M_0 \) has kernel \(\mathfrak{h} \), the Lie algebra of \(H \) (cf. proof of Prop. 4.3). Since \(d\pi_e \) maps \(g \) onto \((G/H)_H \) with kernel \(\mathfrak{h} \) and since \(d\beta_e = dI_H \circ d\pi_e \), we see that \(dI_H \) is one-to-one. Finally, if \(T(g) \) denotes the diffeomorphism \(m \rightarrow g \cdot m \) of \(M \), we have \(I = T(g) \circ I \circ \tau(g^{-1}) \), whence
\[
dI_{gH} = dT(g)_p \circ dI_H \circ d\tau(g^{-1})_{pH},
\]
so \(I \) is everywhere regular.

C.6. By local connectedness each component of \(G \) is open. It acquires an analytic structure from that of \(G_0 \) by left translation. In order to show the map \(\varphi : (x, y) \rightarrow xy^{-1} \) analytic at a point \((x_0, y_0) \in G \times G \) let \(G_1 \) and \(G_2 \) denote the components of \(G \) containing \(x_0 \) and \(y_0 \), respectively. If \(\varphi_0 = \varphi \mid G_0 \times G_0 \) and \(\psi = \varphi \mid G_1 \times G_2 \), then
\[
\psi = L(x_0y_0^{-1}) \circ I(y_0) \circ \varphi_0 \circ L(x_0^{-1}, y_0^{-1}),
\]
where \(I(y_0)(x) = y_0xy_0^{-1} \) (\(x \in G_0 \)). Now \(I(y_0) \) is a continuous automorphism of the Lie group \(G_0 \), hence by Theorem 2.6, analytic; so the expression for \(\psi \) shows that it is analytic.

C.8. If \(N \) with the indicated properties exists we may, by translation, assume it passes through the origin \(o = \{H\} \) in \(M \). Let \(L \) be the subgroup \(\{g \in G : g \cdot N = N\} \). If \(g \in G \) maps \(o \) into \(N \), then \(gN \cap N \neq \emptyset \); so by assumption, \(gN = N \). Thus \(L = \pi^{-1}(N) \) where \(\pi : G \to G/\mathbf{H} \) is the natural map. Using Theorem 15.5, Chapter I we see that \(L \) can be given the structure of a submanifold of \(G \) with a countable basis and by the transitivity of \(G \) on \(M \), \(L \cdot o = N \). By C.7, \(L \) has the desired property. For the converse, define \(N = L \cdot o \) and use Prop. 4.4 or Exercise C.5. Clearly, if \(gN \cap N \neq \emptyset \), then \(g \in L \), so \(gN = N \).

For more information on the primitivity notion which goes back to Lie see e.g. Golubitsky [1].

D. Closed Subgroups

D.1. \(\mathbb{R}^2/\Gamma \) is a torus (Exercise C.2), so it suffices to take a line through \(0 \) in \(\mathbb{R}^2 \) whose image in the torus is dense.

D.2. \(g \) has an \(\text{Int}(g) \)-invariant positive definite quadratic form \(Q \). The proof of Prop. 6.6 now shows \(g = g + g' \) (\(3 = \text{center of } g, g' = [g, g] \) compact and semisimple). The groups \(\text{Int}(g) \) and \(\text{Int}(g') \) are analytic subgroups of \(GL(g) \) with the same Lie algebra so coincide.

D.3. We have

\[
\alpha_{\theta, 1}(c_1, c_2, s) = (c_1, e^{2\pi i/3}c_2, s);
\]

\[
(a_1, a_2, r)(c_1, c_2, s)(a_1, a_2, r)^{-1} = (a_1(1 - e^{2\pi i s}) + c_1e^{2\pi i r}, a_2(1 - e^{2\pi i s}) + c_2e^{2\pi i r}, s),
\]

so \(\alpha_{\theta, 1} \) is not an inner automorphism, and \(A_{\theta, 1} \notin \text{Int}(g) \). Now let \(s_n \to 0 \) and let \(t_n = hs_n + hn \). Select a sequence \((n_k) \subset \mathbb{Z} \) such that \(hn_k \to 1 \) (mod 1) (Kronecker's theorem), and let \(\tau_k \) be the unique point in \([0, 1)\) such that \(t_{n_k} - \tau_k \in \mathbb{Z} \). Putting \(s_k = s_{n_k}, t_k = t_{n_k} \), we have

\[
\alpha_{s_k, t_k} = \alpha_{s_k, t_k} \to \alpha_{0, 1}.
\]

Note: \(G \) is a subgroup of \(H \times H \) where \(H = (\frac{1}{c}, 0), c \in \mathbb{C}, |c| = 1 \).

E. Invariant Differential Forms

E.1. The affine connection on \(G \) given by \(\nabla_\mathbf{X}(\mathbf{Y}) = \frac{1}{2}[\mathbf{X}, \mathbf{Y}] \) is torsion free; and by (5), §7, Chapter I, if \(\omega \) is a left invariant 1-form,

\[
\nabla_\mathbf{X}(\omega)(\mathbf{Y}) = -\omega(\nabla_\mathbf{X}(\mathbf{Y})) = -\frac{1}{2}\omega(\theta(\mathbf{X})(\mathbf{Y})) = \frac{1}{2}(\theta(\mathbf{X})\omega)(\mathbf{Y}),
\]
so $\nabla_{X}(\omega) = \frac{1}{2} \theta(X)(\omega)$ for all left invariant forms ω. Now use Exercise C.4 in Chapter I.

E.2. The first relation is proved as (4), §7. For the other we have $g^{t}g = I$, so $(dg)^{t}g + g^{t}(dg) = 0$. Hence $(g^{-1}dg) + (dg)(g^{-1}) = 0$ and $\Omega + 4\Omega = 0$.

For $U(n)$ we find similarly for $\Omega = g^{-1}dg$,

$$d\Omega + \Omega \wedge \Omega = 0, \quad \Omega + 4\Omega = 0.$$

For $Sp(n) \subset U(2n)$ we recall that $g \in Sp(n)$ if and only if

$$g^{t}g = I_{2n}, \quad gJ_{n}g = J_{n}$$

(cf. Chapter X). Then the form $\Omega = g^{-1}dg$ satisfies

$$d\Omega + \Omega \wedge \Omega = 0, \quad \Omega + 4\Omega = 0, \quad \Omega J_{n} + J_{n}4\Omega = 0.$$

E.3. A direct computation gives

$$g^{-1}dg = \begin{pmatrix} 0 & dx & dz - x \, dy \\ 0 & 0 & dy \\ 0 & 0 & 0 \end{pmatrix}$$

and the result follows.