1.45. **Tensor categories with finitely many simple objects. Frobenius-Perron dimensions.** Let A be a \mathbb{Z}_+-ring with \mathbb{Z}_+-basis I.

Definition 1.45.1. We will say that A is *transitive* if for any $X, Z \in I$ there exist $Y_1, Y_2 \in I$ such that XY_1 and Y_2X involve Z with a nonzero coefficient.

Proposition 1.45.2. If \mathcal{C} is a ring category with right duals then $\text{Gr}(\mathcal{C})$ is a transitive unital \mathbb{Z}_+-ring.

Proof. Recall from Theorem 1.15.8 that the unit object 1 in \mathcal{C} is simple. So $\text{Gr}(\mathcal{C})$ is unital. This implies that for any simple objects X, Z of \mathcal{C}, the object $X \otimes X^* \otimes Z$ contains Z as a composition factor (as $X \otimes X^*$ contains 1 as a composition factor), so one can find a simple object Y_1 occurring in $X^* \otimes Z$ such that Z occurs in $X \otimes Y_1$. Similarly, the object $Z \otimes X^* \otimes X$ contains Z as a composition factor, so one can find a simple object Y_2 occurring in $Z \otimes X^*$ such that Z occurs in $Y_2 \otimes X$. Thus $\text{Gr}(\mathcal{C})$ is transitive. \hfill \square

Let A be a transitive unital \mathbb{Z}_+-ring of finite rank. Define the group homomorphism $\text{FPdim} : A \to \mathbb{C}$ as follows. For $X \in I$, let $\text{FPdim}(X)$ be the maximal nonnegative eigenvalue of the matrix of left multiplication by X. It exists by the Frobenius-Perron theorem, since this matrix has nonnegative entries. Let us extend FPdim from the basis I to A by additivity.

Definition 1.45.3. The function FPdim is called the *Frobenius-Perron dimension*.

In particular, if \mathcal{C} is a ring category with right duals and finitely many simple objects, then we can talk about Frobenius-Perron dimensions of objects of \mathcal{C}.

Proposition 1.45.4. Let $X \in I$.

1. The number $\alpha = \text{FPdim}(X)$ is an algebraic integer, and for any algebraic conjugate α' of α we have $\alpha \geq |\alpha'|$.

2. $\text{FPdim}(X) \geq 1$.

Proof. (1) Note that α is an eigenvalue of the integer matrix N_X of left multiplication by X, hence α is an algebraic integer. The number α' is a root of the characteristic polynomial of N_X, so it is also an eigenvalue of N_X. Thus by the Frobenius-Perron theorem $\alpha \geq |\alpha'|$.

(2) Let r be the number of algebraic conjugates of α. Then $\alpha' \geq N(\alpha)$ where $N(\alpha)$ is the norm of α. This implies the statement since $N(\alpha) \geq 1$. \hfill \square
Proposition 1.45.5.
(1) The function $\text{FPdim} : A \to \mathbb{C}$ is a ring homomorphism.
(2) There exists a unique, up to scaling, element $R \in A_{\mathbb{C}} := A \otimes_{\mathbb{Z}} \mathbb{C}$ such that $XR = \text{FPdim}(X)R$, for all $X \in A$. After an appropriate normalization this element has positive coefficients, and satisfies $\text{FPdim}(R) > 0$ and $RY = \text{FPdim}(Y)R$, $Y \in A$.
(3) FPdim is a unique nonzero character of A which takes nonnegative values on I.
(4) If $X \in A$ has nonnegative coefficients with respect to the basis of A, then $\text{FPdim}(X)$ is the largest nonnegative eigenvalue $\lambda(N_X)$ of the matrix N_X of multiplication by X.

Proof. Consider the matrix M of right multiplication by $\sum_{X \in I} X$ in A in the basis I. By transitivity, this matrix has strictly positive entries, so by the Frobenius-Perron theorem, part (2), it has a unique, up to scaling, eigenvector $R \in A_{\mathbb{C}}$ with eigenvalue $\lambda(M)$ (the maximal positive eigenvalue of M). Furthermore, this eigenvector can be normalized to have strictly positive entries.

Since R is unique, it satisfies the equation $XR = d(X)R$ for some function $d : A \to \mathbb{C}$. Indeed, XR is also an eigenvector of M with eigenvalue $\lambda(M)$, so it must be proportional to R. Furthermore, it is clear that d is a character of A. Since R has positive entries, $d(X) = \text{FPdim}(X)$ for $X \in I$. This implies (1). We also see that $\text{FPdim}(X) > 0$ for $X \in I$ (as R has strictly positive coefficients), and hence $\text{FPdim}(R) > 0$.

Now, by transitivity, R is the unique, up to scaling, solution of the system of linear equations $XR = \text{FPdim}(X)R$ (as the matrix N of left multiplication by $\sum_{X \in I} X$ also has positive entries). Hence, $RY = d'(Y)R$ for some character d'. Applying FPdim to both sides and using that $\text{FPdim}(R) > 0$, we find $d' = \text{FPdim}$, proving (2).

If χ is another character of A taking positive values on I, then the vector with entries $\chi(Y)$, $Y \in I$ is an eigenvector of the matrix N of the left multiplication by the element $\sum_{X \in I} X$. Because of transitivity of A the matrix N has positive entries. By the Frobenius-Perron theorem there exists a positive number λ such that $\chi(Y) = \lambda \text{FPdim}(Y)$. Since χ is a character, $\lambda = 1$, which completes the proof.

Finally, part (4) follows from part (2) and the Frobenius-Perron theorem (part (3)). \square

Example 1.45.6. Let \mathcal{C} be the category of finite dimensional representations of a quasi-Hopf algebra H, and A be its Grothendieck ring. Then by Proposition 1.10.9, for any $X, Y \in \mathcal{C}$

$$\dim \text{Hom}(X \otimes H, Y) = \dim \text{Hom}(H, \ast X \otimes Y) = \dim(X) \dim(Y),$$
where H is the regular representation of H. Thus $X \otimes H = \dim(X)H$, so $\FPdim(X) = \dim(X)$ for all X, and $R = H$ up to scaling.

This example motivates the following definition.

Definition 1.45.7. The element R will be called a regular element of A.

Proposition 1.45.8. Let A be as above and $*: I \to I$ be a bijection which extends to an anti-automorphism of A. Then \FPdim is invariant under $*$.

Proof. Let $X \in I$. Then the matrix of right multiplication by X^* is the transpose of the matrix of left multiplication by X modified by the permutation $*$. Thus the required statement follows from Proposition 1.45.5(2).

Corollary 1.45.9. Let C be a ring category with right duals and finitely many simple objects, and let X be an object in C. If $\FPdim(X) = 1$, then X is invertible.

Proof. By Exercise 1.15.10(d) it is sufficient to show that $X \otimes X^* = 1$. This follows from the facts that 1 is contained in $X \otimes X^*$ and $\FPdim(X \otimes X^*) = \FPdim(X) \FPdim(X^*) = 1$.

Proposition 1.45.10. Let $f: A_1 \to A_2$ be a unital homomorphism of transitive unital \mathbb{Z}_+-rings of finite rank, whose matrix in their \mathbb{Z}_+-bases has non-negative entries. Then

1. f preserves Frobenius-Perron dimensions.
2. Let I_1, I_2 be the \mathbb{Z}_+-bases of A_1, A_2, and suppose that for any Y in I_2 there exists $X \in I_1$ such that the coefficient of Y in $f(X)$ is non-zero. If R is a regular element of A_1 then $f(R)$ is a regular element of A_2.

Proof. (1) The function $X \mapsto \FPdim(f(X))$ is a nonzero character of A_1 with nonnegative values on the basis. By Proposition 1.45.5(3), $\FPdim(f(X)) = \FPdim(X)$ for all X in I. (2) By part (1) we have

$$(1.45.1) \quad f(\sum_{X \in I_1} X)f(R_1) = \FPdim(f(\sum_{X \in I_1} X))f(R_1).$$

But $f(\sum_{X \in I_1} X)$ has strictly positive coefficients in I_2, hence $f(R_1) = \beta R_2$ for some $\beta > 0$. Applying \FPdim to both sides, we get the result.

Corollary 1.45.11. Let C and D be tensor categories with finitely many classes of simple objects. If $F: C \to D$ be a quasi-tensor functor, then $\FPdim_D(F(X)) = \FPdim_C(X)$ for any X in C.
Example 1.45.12. (Tambara-Yamagami fusion rings) Let G be a finite group, and TY_G be an extension of the unital based ring $\mathbb{Z}[G]$:

$$TY_G := \mathbb{Z}[G] \oplus \mathbb{Z}X,$$

where X is a new basis vector with $gX = Xg = X$, $X^2 = \sum_{g \in G} g$. This is a fusion ring, with $X^* = X$. It is easy to see that $\text{FPdim}(g) = 1$, $\text{FPdim}(X) = |G|^{1/2}$. We will see later that these rings are categorifiable if and only if G is abelian.

Example 1.45.13. (Verlinde rings for \mathfrak{sl}_2). Let k be a nonnegative integer. Define a unital \mathbb{Z}_+-ring $\text{Ver}_k = \text{Ver}_k(\mathfrak{sl}_2)$ with basis V_i, $i = 0, ..., k$ ($V_0 = 1$), with duality given by $V_i^* = V_i$ and multiplication given by the truncated Clebsch-Gordan rule:

$$V_i \otimes V_j = \bigoplus_{l = |i-j|, i+j-1 \in \mathbb{Z}} V_l.$$ \hspace{1cm} (1.45.2)

It other words, one computes the product by the usual Clebsch-Gordan rule, and then deletes the terms that are not defined (V_i with $i > k$) and also their mirror images with respect to point $k+1$. We will show later that this ring admits categorifications coming from quantum groups at roots of unity.

Note that $\text{Ver}_0 = \mathbb{Z}$, $\text{Ver}_1 = \mathbb{Z}[\mathbb{Z}_2]$, $\text{Ver}_2 = TY_{\mathbb{Z}_2}$. The latter is called the Ising fusion ring, as it arises in the Ising model of statistical mechanics.

Exercise 1.45.14. Show that $\text{FPdim}(V_j) = [j+1]_q := \frac{q^{j+1} - q^{-j-1}}{q-q^{-1}}$, where $q = e^{2\pi i/3}$.

Note that the Verlinde ring has a subring Ver_k^0 spanned by V_j with even j. If $k = 3$, this ring has basis 1, $X = V_2$ with $X^2 = X + 1$, $X^* = X$. This ring is called the Yang-Lee fusion ring. In the Yang-Lee ring, $\text{FPdim}(X)$ is the golden ratio $\frac{1+\sqrt{5}}{2}$.

Note that one can define the generalized Yang-Lee fusion rings YL_n $n \in \mathbb{Z}_+$, with basis 1, X, multiplication $X^2 = 1 + nX$ and duality $X^* = X$. It is, however, shown in [O2] that these rings are not categorifiable when $n > 1$.

Proposition 1.45.15. (Kronecker) Let B be a matrix with nonnegative integer entries, such that $\lambda(BB^\top) = \lambda(B)^2$. If $\lambda(B) < 2$ then $\lambda(B) = 2\cos(\pi/n)$ for some integer $n \geq 2$.

Proof. Let $\lambda(B) = q + q^{-1}$. Then q is an algebraic integer, and $|q| = 1$. Moreover, all conjugates of $\lambda(B)^2$ are nonnegative (since they are
eigenvalues of the matrix BB^T, which is symmetric and nonnegative definite), so all conjugates of $\lambda(B)$ are real. Thus, if q_* is a conjugate of q then $q_* + q_*^{-1}$ is real with absolute value < 2 (by the Frobenius-Perron theorem), so $|q_*| = 1$. By a well known result in elementary algebraic number theory, this implies that q is a root of unity: $q = e^{2\pi ik/m}$, where k and m are coprime. By the Frobenius-Perron theorem, so $k = \pm 1$, and m is even (indeed, if $m = 2p + 1$ is odd then $|q^p + q^{-p}| > |q + q^{-1}|$). So $q = e^{\pi i/n}$ for some integer $n \geq 2$, and we are done.

\[\Box \]

\textbf{Corollary 1.45.16.} Let A be a fusion ring, and $X \in A$ a basis element. Then if $FPdim(X) < 2$ then $FPdim(X) = 2\cos(\pi/n)$, for some integer $n \geq 3$.

\textit{Proof.} This follows from Proposition 1.45.15, since $FPdim(X^*) = FPdim(X)^2$. \[\Box \]

\section{1.46. Deligne’s tensor product of finite abelian categories.} Let \mathcal{C}, \mathcal{D} be two finite abelian categories over a field k.

\textbf{Definition 1.46.1.} Deligne’s tensor product $\mathcal{C} \boxtimes \mathcal{D}$ is an abelian category which is universal for the functor assigning to every k-linear abelian category \mathcal{A} the category of right exact in both variables bilinear bifunctors $\mathcal{C} \times \mathcal{D} \to \mathcal{A}$. That is, there is a bifunctor $\boxtimes : \mathcal{C} \times \mathcal{D} \to \mathcal{C} \boxtimes \mathcal{D}$: $(X, Y) \mapsto X \boxtimes Y$ which is right exact in both variables and is such that for any right exact in both variables bifunctor $F : \mathcal{C} \times \mathcal{D} \to \mathcal{A}$ there exists a unique right exact functor $\tilde{F} : \mathcal{C} \boxtimes \mathcal{D} \to \mathcal{A}$ satisfying $\tilde{F} \circ \boxtimes = F$.

\textbf{Proposition 1.46.2.} (cf. [D, Proposition 5.13]) (i) The tensor product $\mathcal{C} \boxtimes \mathcal{D}$ exists and is a finite abelian category.

(ii) It is unique up to a unique equivalence.

(iii) Let \mathcal{C}, \mathcal{D} be finite dimensional algebras and let $\mathcal{C} = \mathcal{C} - \text{mod}$ and $\mathcal{D} = \mathcal{D} - \text{mod}$. Then $\mathcal{C} \boxtimes \mathcal{D} = \mathcal{C} \otimes \mathcal{D} - \text{mod}$.

(iv) The bifunctor \boxtimes is exact in both variables and satisfies

$$\text{Hom}_\mathcal{C}(X_1, Y_1) \otimes \text{Hom}_\mathcal{D}(X_2, Y_2) \cong \text{Hom}_{\mathcal{C} \boxtimes \mathcal{D}}(X_1 \boxtimes X_2, Y_1 \boxtimes Y_2).$$

(v) any bilinear bifunctor $F : \mathcal{C} \times \mathcal{D} \to \mathcal{A}$ exact in each variable defines an exact functor $\tilde{F} : \mathcal{C} \boxtimes \mathcal{D} \to \mathcal{A}$.

\textit{Proof.} (sketch). (ii) follows from the universal property in the usual way.

(i) As we know, a finite abelian category is equivalent to the category of finite dimensional modules over an algebra. So there exist finite dimensional algebras \mathcal{C}, \mathcal{D} such that $\mathcal{C} = \mathcal{C} - \text{mod}$, $\mathcal{D} = \mathcal{D} - \text{mod}$. Then one can define $\mathcal{C} \boxtimes \mathcal{D} = \mathcal{C} \otimes \mathcal{D} - \text{mod}$, and it is easy to show that
it satisfies the required conditions. This together with (ii) also implies (iii).

(iv), (v) are routine. \(\square\)

A similar result is valid for locally finite categories.

Deligne’s tensor product can also be applied to functors. Namely, if \(F : \mathcal{C} \to \mathcal{C}'\) and \(G : \mathcal{D} \to \mathcal{D}'\) are additive right exact functors between finite abelian categories then one can define the functor \(F \boxtimes G : \mathcal{C} \boxtimes \mathcal{D} \to \mathcal{C}' \boxtimes \mathcal{D}'\).

Proposition 1.46.3. If \(\mathcal{C}, \mathcal{D}\) are multitensor categories then the category \(\mathcal{C} \boxtimes \mathcal{D}\) has a natural structure of a multitensor category.

Proof. Let \(X_1 \boxtimes Y_1, X_2 \boxtimes Y_2 \in \mathcal{C} \boxtimes \mathcal{D}\). Then we can set
\[
(X_1 \boxtimes Y_1) \otimes (X_2 \boxtimes Y_2) := (X_1 \otimes X_2) \boxtimes (Y_1 \boxtimes Y_2),
\]
and define the associativity isomorphism in the obvious way. This defines a structure of a monoidal category on the subcategory of \(\mathcal{C} \boxtimes \mathcal{D}\) consisting of “\(\boxtimes\)-decomposable” objects of the form \(X \boxtimes Y\). But any object of \(\mathcal{C} \boxtimes \mathcal{D}\) admits a resolution by \(\boxtimes\)-decomposable injective objects. This allows us to use a standard argument with resolutions to extend the tensor product to the entire category \(\mathcal{C} \boxtimes \mathcal{D}\). It is easy to see that if \(\mathcal{C}, \mathcal{D}\) are rigid, then so is \(\mathcal{C} \boxtimes \mathcal{D}\), which implies the statement. \(\square\)

1.47. **Finite (multi)tensor categories.** In this subsection we will study general properties of finite multitensor and tensor categories.

Recall that in a finite abelian category, every simple object \(X\) has a projective cover \(P(X)\). The object \(P(X)\) is unique up to a non-unique isomorphism. For any \(Y\) in \(\mathcal{C}\) one has

\[(1.47.1) \quad \dim \text{Hom}(P(X), Y) = [Y : X].\]

Let \(K_0(\mathcal{C})\) denote the free abelian group generated by isomorphism classes of indecomposable projective objects of a finite abelian category \(\mathcal{C}\). Elements of \(K_0(\mathcal{C}) \otimes \mathbb{Z} \mathbb{C}\) will be called virtual projective objects. We have an obvious homomorphism \(\gamma : K_0(\mathcal{C}) \to \text{Gr}(\mathcal{C})\). Although groups \(K_0(\mathcal{C})\) and \(\text{Gr}(\mathcal{C})\) have the same rank, in general \(\gamma\) is neither surjective nor injective even after tensoring with \(\mathbb{C}\). The matrix \(C\) of \(\gamma\) in the natural basis is called the Cartan matrix of \(\mathcal{C}\); its entries are \([P(X) : Y]\), where \(X, Y\) are simple objects of \(\mathcal{C}\).

Now let \(\mathcal{C}\) be a finite multitensor category, let \(I\) be the set of isomorphism classes of simple objects of \(\mathcal{C}\), and let \(i^*, \ast i\) denote the right and left duals to \(i\), respectively. Let \(\text{Gr}(\mathcal{C})\) be the Grothendieck ring of \(\mathcal{C}\), spanned by isomorphism classes of the simple objects \(X_i, i \in I\). In this ring, we have \(X_i X_j = \sum_k N_{ij}^k X_k\), where \(N_{ij}^k\) are nonnegative integers. Also, let \(P_i\) denote the projective covers of \(X_i\).
Proposition 1.47.1. Let \mathcal{C} be a finite multitensor category. Then $K_0(\mathcal{C})$ is a $\text{Gr}(\mathcal{C})$-bimodule.

Proof. This follows from the fact that the tensor product of a projective object with any object is projective, Proposition 1.13.6. □

Let us describe this bimodule explicitly.

Proposition 1.47.2. For any object Z of \mathcal{C},

$$P_i \otimes Z \cong \oplus_{j,k} N_{kj}^i [Z : X_j] P_k, \quad Z \otimes P_i \cong \oplus_{j,k} N_{ik}^j [Z : X_j] P_k.$$

Proof. $\text{Hom}(P_i \otimes Z, X_k) = \text{Hom}(P_i, X_k \otimes Z^*)$, and the first formula follows from Proposition 1.13.6. The second formula is analogous. □

Proposition 1.47.3. Let P be a projective object in a multitensor category \mathcal{C}. Then P^* is also projective. Hence, any projective object in a multitensor category is also injective.

Proof. We need to show that the functor $\text{Hom}(P^*, \bullet)$ is exact. This functor is isomorphic to $\text{Hom}(1, P \otimes \bullet)$. The functor $P \otimes \bullet$ is exact and moreover, by Proposition 1.13.6, any exact sequence splits after tensoring with P, as an exact sequence consisting of projective objects. The Proposition is proved. □

Proposition 1.47.3 implies that an indecomposable projective object P has a unique simple subobject, i.e., that the socle of P is simple.

For any finite tensor category \mathcal{C} define an element $R_\mathcal{C} \in K_0(\mathcal{C}) \otimes \mathbb{C}$ by

$$(1.47.2) \quad R_\mathcal{C} = \sum_{i \in I} \text{FPdim}(X_i) P_i.$$

Definition 1.47.4. The virtual projective object $R_\mathcal{C}$ is called the regular object of \mathcal{C}.

Definition 1.47.5. Let \mathcal{C} be a finite tensor category. Then the Frobenius-Perron dimension of \mathcal{C} is defined by

$$(1.47.3) \quad \text{FPdim}(\mathcal{C}) := \text{FPdim}(R_\mathcal{C}) = \sum_{i \in I} \text{FPdim}(X_i) \text{FPdim}(P_i).$$

Example 1.47.6. Let H be a finite dimensional quasi-Hopf algebra. Then $\text{FPdim}(\text{Rep}(H)) = \dim(H)$.

Proposition 1.47.7. (1) $Z \otimes R_\mathcal{C} = R_\mathcal{C} \otimes Z = \text{FPdim}(Z) R_\mathcal{C}$ for all $Z \in \text{Gr}(\mathcal{C})$.

(2) The image of $R_\mathcal{C}$ in $\text{Gr}(\mathcal{C}) \otimes \mathbb{C}$ is a regular element.
Proof. We have \(\sum_i \text{FPdim}(X_i) \dim \text{Hom}(P_i, Z) = \text{FPdim}(Z) \) for any object \(Z \) of \(\mathcal{C} \). Hence,
\[
\sum_i \text{FPdim}(X_i) \dim \text{Hom}(P_i \otimes Z, Y) = \sum_i \text{FPdim}(X_i) \dim \text{Hom}(P_i, Y \otimes Z^*)
\]
\[
= \text{FPdim}(Y \otimes Z^*)
\]
\[
= \text{FPdim}(Y) \text{FPdim}(Z^*)
\]
\[
= \text{FPdim}(Y) \text{FPdim}(Z)
\]
\[
= \text{FPdim}(Z) \sum_i \text{FPdim}(X_i) \dim \text{Hom}(P_i, Y).
\]

Now, \(P(X) \otimes Z \) are projective objects by Proposition 1.13.6. Hence, the formal sums \(\sum_i \text{FPdim}(X_i) P_i \otimes Z = R \otimes Z \) and \(\text{FPdim}(Z) \sum_i \text{FPdim}(X_i) P_i = \text{FPdim}(Z) R \) are linear combinations of \(P_j, j \in I \) with the same coefficients. \(\square \)

Remark 1.47.8. We note the following useful inequality:
\[
(1.47.4) \quad \text{FPdim}(C) \geq N \text{FPdim}(P),
\]
where \(N \) is the number of simple objects in \(C \), and \(P \) is the projective cover of the neutral object \(1 \). Indeed, for any simple object \(V \) the projective object \(P(V) \otimes ^*V \) has a nontrivial homomorphism to \(1 \), and hence contains \(P \). So \(\text{FPdim}(P(V)) \text{FPdim}(V) \geq \text{FPdim}(P) \). Adding these inequalities over all simple \(V \), we get the result.

1.48. Integral tensor categories.

Definition 1.48.1. A transitive unital \(\mathbb{Z}_+ \)-ring \(A \) of finite rank is said to be integral if \(\text{FPdim} : A \to \mathbb{Z} \) (i.e. the Frobenius-Perron dimensions of elements of \(C \) are integers). A tensor category \(C \) is integral if \(\text{Gr}(C) \) is integral.

Proposition 1.48.2. A finite tensor category \(C \) is integral if and only if \(C \) is equivalent to the representation category of a finite dimensional quasi-Hopf algebra.

Proof. The “if” part is clear from Example 1.45.6. To prove the “only if” part, it is enough to construct a quasi-fiber functor on \(C \). Define \(P = \bigoplus_i \text{FPdim}(X_i) P_i \), where \(X_i \) are the simple objects of \(C \), and \(P_i \) are their projective covers. Define \(F = \text{Hom}(P, \bullet) \). Obviously, \(F \) is exact and faithful, \(F(1) \cong 1 \), and \(\dim F(X) = \text{FPdim}(X) \) for all \(X \in C \). Using Proposition 1.46.2, we continue the functors \(F(\bullet \otimes \bullet) \) and \(F(\bullet) \otimes F(\bullet) \) to the functors \(C \otimes C \to \text{Vec} \). Both of these functors are exact and take the same values on the simple objects of \(C \otimes C \). Thus these functors are isomorphic and we are done. \(\square \)
Corollary 1.48.3. The assignment $H \mapsto \text{Rep}(H)$ defines a bijection between integral finite tensor categories \mathcal{C} over k up to monoidal equivalence, and finite dimensional quasi-Hopf algebras H over k, up to twist equivalence and isomorphism.

1.49. **Surjective quasi-tensor functors.** Let \mathcal{C}, \mathcal{D} be abelian categories. Let $F : \mathcal{C} \to \mathcal{D}$ be an additive functor.

Definition 1.49.1. We will say that F is **surjective** if any object of \mathcal{D} is a subquotient in $F(X)$ for some $X \in \mathcal{C}$. \(^\text{13}\)

Exercise 1.49.2. Let A, B be coalgebras, and $f : A \to B$ a homomorphism. Let $F = f^* : A - \text{comod} \to B - \text{comod}$ be the corresponding pushforward functor. Then F is surjective if and only if f is surjective.

Now let \mathcal{C}, \mathcal{D} be finite tensor categories.

Theorem 1.49.3. ([EO]) Let $F : \mathcal{C} \to \mathcal{D}$ be a surjective quasi-tensor functor. Then F maps projective objects to projective ones.

Proof. Let \mathcal{C} be a finite tensor category, and $X \in \mathcal{C}$. Let us write X as a direct sum of indecomposable objects (such a representation is unique). Define the **projectivity defect** $p(X)$ of X to be the sum of Frobenius-Perron dimensions of all the non-projective summands in this sum (this is well defined by the Krull-Schmidt theorem). It is clear that $p(X \oplus Y) = p(X) + p(Y)$. Also, it follows from Proposition 1.13.6 that $p(X \otimes Y) \leq p(X)p(Y)$.

Let P_i be the indecomposable projective objects in \mathcal{C}. Let $P_i \otimes P_j \cong \oplus_k B_{ij}^k P_k$, and let B_i be the matrix with entries B_{ij}^k. Also, let $B = \sum B_i$. Obviously, B has strictly positive entries, and the Frobenius-Perron eigenvalue of B is $\sum_i \text{FPdim}(P_i)$.

On the other hand, let $F : \mathcal{C} \to \mathcal{D}$ be a surjective quasi-tensor functor between finite tensor categories. Let $p_j = p(F(P_j))$, and p be the vector with entries p_j. Then we get $p_ip_j \geq \sum_k B_{ij}^k p_k$, so $(\sum_i p_i)p \geq Bp$. So, either p_i are all zero, or they are all positive, and the norm of B with respect to the norm $|x| = \sum p_i |x_i|$ is at most $\sum p_i$. Since $p_i \leq \text{FPdim}(P_i)$, this implies $p_i = \text{FPdim}(P_i)$ for all i (as the largest eigenvalue of B is $\sum_i \text{FPdim}(P_i)$).

Assume the second option is the case. Then $F(P_i)$ do not contain nonzero projective objects as direct summands, and hence for any projective $P \in \mathcal{C}$, $F(P)$ cannot contain a nonzero projective object as a direct summand. However, let Q be a projective object of \mathcal{D}. Then,

\(^\text{13}\) This definition does not coincide with a usual categorical definition of surjectivity of functors which requires that every object of \mathcal{D} be isomorphic to some $F(X)$ for an object X in \mathcal{C}.
since F is surjective, there exists an object $X \in \mathcal{C}$ such that Q is a subquotient of $F(X)$. Since any X is a quotient of a projective object, and F is exact, we may assume that $X = P$ is projective. So Q occurs as a subquotient in $F(P)$. As Q is both projective and injective, it is actually a direct summand in $F(P)$. Contradiction.

Thus, $p_i = 0$ and $F(P_i)$ are projective. The theorem is proved. \hfill \Box

1.50. **Categorical freeness.** Let \mathcal{C}, \mathcal{D} be finite tensor categories, and $F : \mathcal{C} \to \mathcal{D}$ be a quasi-tensor functor.

Theorem 1.50.1. One has

\[(1.50.1) \quad F(R_\mathcal{C}) = \frac{\text{FPdim(}\mathcal{C})}{\text{FPdim(}\mathcal{D})} R_\mathcal{D}.\]

Proof. By Theorem 1.49.3, $F(R_\mathcal{C})$ is a virtually projective object. Thus, $F(R_\mathcal{C})$ must be proportional to $R_\mathcal{D}$, since both (when written in the basis P_i) are eigenvectors of a matrix with strictly positive entries with its Frobenius-Perron eigenvalue. (For this matrix we may take the matrix of multiplication by $F(X)$, where X is such that $F(X)$ contains as composition factors all simple objects of \mathcal{D}; such exists by the surjectivity of F). The coefficient is obtained by computing the Frobenius-Perron dimensions of both sides. \hfill \Box

Corollary 1.50.2. In the above situation, one has $\text{FPdim(}\mathcal{C}) \geq \text{FPdim(}\mathcal{D})$, and $\text{FPdim(}\mathcal{D})$ divides $\text{FPdim(}\mathcal{C})$ in the ring of algebraic integers. In fact,

\[(1.50.2) \quad \frac{\text{FPdim(}\mathcal{C})}{\text{FPdim(}\mathcal{D})} = \sum \text{FPdim}(X_i) \dim \text{Hom}(F(P_i), 1_\mathcal{D}),\]

where X_i runs over simple objects of \mathcal{C}.

Proof. The statement is obtained by computing the dimension of $\text{Hom}(\bullet, 1_\mathcal{D})$ for both sides of (1.50.1). \hfill \Box

Suppose now that \mathcal{C} is integral, i.e., by Proposition 1.48.2, it is the representation category of a quasi-Hopf algebra H. In this case, $R_\mathcal{C}$ is an honest (not only virtual) projective object of \mathcal{C}, namely the free rank 1 module over H. Therefore, multiples of $R_\mathcal{C}$ are free H-modules of finite rank, and vice versa.

Then Theorem 1.49.3 and the fact that $F(R_\mathcal{C})$ is proportional to $R_\mathcal{D}$ implies the following categorical freeness result.

Corollary 1.50.3. If \mathcal{C} is integral, and $F : \mathcal{C} \to \mathcal{D}$ is a surjective quasi-tensor functor then \mathcal{D} is also integral, and the object $F(R_\mathcal{C})$ is free of rank $\text{FPdim(}\mathcal{C})/\text{FPdim(}\mathcal{D})$ (which is an integer).
Proof. The Frobenius-Perron dimensions of simple objects of \mathcal{D} are coordinates of the unique eigenvector of the positive integer matrix of multiplication by $F(R_C)$ with integer eigenvalue $FPdim(C)$, normalized so that the component of 1 is 1. Thus, all coordinates of this vector are rational numbers, hence integers (because they are algebraic integers). This implies that the category \mathcal{D} is integral. The second statement is clear from the above. \qed

Corollary 1.50.4. ([Scha]; for the semisimple case see [ENO1]) A finite dimensional quasi-Hopf algebra is a free module over its quasi-Hopf subalgebra.

Remark 1.50.5. In the Hopf case Corollary 1.50.3 is well known and much used; it is due to Nichols and Zoeller [NZ].