18.781 Solutions to Problem Set 4, Part 2

1. (a) To find a primitive root mod 23, we use trial and error. Since \(\phi(23) = 22 \), for \(a \) to be a primitive root we just need to check that \(a^2 \neq 1 \pmod{23} \) and \(a^{11} \neq 1 \pmod{23} \).

\[
2^{11} = 2^5 \cdot 2^3 \cdot 2 \equiv 9 \cdot 9 \cdot 2 \equiv -11 \cdot 2 \equiv 1 \pmod{23},
\]
so 2 doesn’t work.

\[
3^{11} = 3^3 \cdot 3^3 \cdot 9 \equiv 4^3 \cdot 9 \equiv -5 \cdot 9 \equiv 1 \pmod{23},
\]
so 3 doesn’t work either.

\[
5^{11} \equiv (5^2)^5 \cdot 5 \equiv 2^5 \cdot 5 \equiv 9 \cdot 5 \equiv -1 \pmod{23}
\]
and \(5^2 \equiv 2 \pmod{23} \), so 5 is a primitive root mod 23.

Now by the proof of existence of primitive roots mod \(p^2 \), using Hensel’s lemma, only one lift of 5 will fail to be a primitive root mod 23.

We need to check whether \(5^{22} \equiv 1 \pmod{23^2} \):

\[
5^{22} = (5^5)^4 \cdot 5^2 \equiv (3125)^4 \cdot 25 \equiv (-49)^4 \cdot 25 \equiv (2401)^2 \cdot 25 \equiv 288 \cdot 25 \equiv 323 \pmod{529}.
\]
So 5 is a primitive root mod 529.

(b) We have that

\[
3^8 \equiv (3^4)^2 \equiv (-4)^2 \equiv -1 \pmod{17}.
\]

Now the order of 3 mod 17 must divide \(\phi(17) = 16 \), and thus must be a power of 2. Clearly the order must be greater than 8, since otherwise the order would divide 8 and we would have \(3^8 \equiv 1 \pmod{17} \). So the order of 3 mod 17 is exactly 16, which implies that 3 is a primitive root mod 17.

2. Since \(2^m - 1 \) and \(2^n + 1 \) are odd, any prime \(p \) dividing both must be an odd prime. We have \(2^m \equiv 1 \pmod{p} \) and \(2^n \equiv -1 \pmod{p} \), so the order of 2 mod \(p \), say, \(h \), divides \(m \) and is thus odd. But since \(2^{2n} \equiv (2^n)^2 \equiv 1 \pmod{p} \), \(h \) must also divide \(n \), so \(2^n \equiv -1 \equiv 1 \pmod{p} \), contradiction. Therefore \(\gcd(2^m - 1, 2^n + 1) \) can’t have any prime divisors, so it must equal 1.

3. If \(k \) is not a power of 2, then some odd prime \(p \) divides \(k \). Letting \(k = mp \), we have

\[
a^k + 1 = a^{mp} + 1 = (a^m + 1)(a^{mp-1} - a^{mp-2} + \cdots - a^m + 1).
\]

It’s easy to see that \(1 < a^m + 1 < a^k + 1 \), so \(a^k + 1 \) must be composite. Therefore for \(a^k + 1 \) to be prime, \(k \) must be a power of 2.

Now if \(p | a^{2^t} + 1 \) and \(p \neq 2 \) then \(p \) is odd, and \(a^{2^n} \equiv -1 \pmod{p} \) implies that \(a^{2^{n+1}} \equiv 1 \pmod{p} \). Note that \((a, p) = 1 \). So the order of \(a \) mod \(p \), say, \(h \), divides \(2^{n+1} \) and is thus a power of 2. But \(h \) cannot be less than or equal to \(2^n \), else we would have \(2^{2^n} \equiv -1 \equiv 1 \pmod{p} \), contradicting the assumption that \(p \) is odd. Therefore, \(h = 2^{n+1} \). Then by Fermat’s Little Theorem we have \(2^{n+1} | p - 1 \), i.e., \(p \equiv 1 \pmod{2^{n+1}} \).
4. Since $a^{n-1} \equiv 1 \pmod{n}$, it follows immediately that $\gcd(a, n) = 1$. Let h be the order of a mod n. By definition h is the smallest positive integer such that $a^h \equiv 1 \pmod{n}$, so $h = n - 1$. Now Euler’s theorem implies that $a^{\phi(n)} \equiv 1 \pmod{n}$. Thus, $h = n - 1\phi(n)$, which in particular means that $n - 1 \leq \phi(n)$. But since $n > 1$, we know that $\phi(n)$ is the number of elements in $\{1, \ldots, n - 1\}$ which are coprime to n, so $\phi(n) \leq n - 1$. Hence $\phi(n) = n - 1$ and n is coprime to $1, 2, \ldots, n - 1$. Therefore, n must be prime.

5. We’ll first show that if $a \equiv b \pmod{p(p-1)}$, then $a^a \equiv b^b \pmod{p}$. If a and b are both equivalent to $0 \pmod{p}$ then $a^a \equiv b^b \equiv 0 \pmod{p}$ is clear, since a and b are positive integers. So assume a, and thus b as well, is coprime to p. Writing $b = a + tp(p-1)$, we have

$$b^b = (a + tp(p-1))^{a + tp(p-1)}$$

$$\equiv a^{a + tp(p-1)}$$

$$\equiv a^a \cdot (a^{p-1})^t$$

$$\equiv a^a \cdot (1)^t$$

$$\equiv a^a \pmod{p}.$$

Now let the period of the sequence be h. From the above proof, h divides $p(p-1)$. We know that $a^a \equiv (a + th)^{a + th} \pmod{p}$ for all positive integers a, t. If we set $a = p$ and $t = 1$ we get $p^p \equiv (p + h)^{p + h} \pmod{p}$, which forces $h \equiv 0 \pmod{p}$. So letting $h = kp$, we have

$$a^a \equiv (a + tkp)^{a + tkp} \equiv a^{a + tkp} \pmod{p}$$

for every pair of positive integers a, t. If we take a to be a primitive root g mod p and again set $t = 1$, we get that $g^{kp} \equiv 1 \pmod{p}$, so $p - 1\mid kp$. Furthermore, $p - 1 \mid kp$ because $\gcd(p-1, p) = 1$. Therefore, $h = kp$ is divisible by $(p-1)p$. Since h also divides $p(p-1)$, it follows that $h = p(p-1)$.

6. We can assume that $0 < a < q$, otherwise divide out a/q and reset a as the remainder. Now if k is the order of 10 mod q then $q \mid 10^k - 1$, so let $10^k - 1 = mq$ for some positive integer m. Then

$$\frac{a}{q} = \frac{10^k a}{10^k q}$$

$$= \frac{a(10^k - 1 + 1)}{10^k q}$$

$$= \frac{a(10^k) - a}{10^k q}$$

$$= \frac{am}{10^k} + \frac{a}{10^k q}$$

Now note that $0 < am < qm \leq 10^m - 1$. So $\frac{am}{10^k}$ has a finite decimal expansion $0.m_1m_2\ldots m_k$ with k digits, and since the decimal expansion of $\frac{a}{q}$ is just that of $\frac{a}{q}$ but shifted k digits to the right by adding k zeroes at the beginning, it’s clear that $\frac{a}{q}$ will have the decimal expansion $0.m_1\ldots m_km_1\ldots m_k\ldots$. So the smallest period is a divisor of k. To show it’s exactly k, suppose that $a/q = 0.r_1\ldots r_{1n_1}\ldots n_hn_1\ldots n_h\ldots$, where h divides k. Multiplying by 10^k, we get

$$\frac{10^k a}{q} = r_1\ldots r_{1n_1}\ldots n_hn_1\ldots n_h\ldots$$

Subtracting off the integer part and replacing a by the remainder of $10^k a \pmod{q}$ (which doesn’t change the fact that $(a, q) = 1$),

$$\frac{a}{q} = 0.n_1\ldots n_hn_1\ldots n_h\ldots$$

If n is the integer with decimal expansion $n_1\ldots n_h$, this equation says $a/q = n/(10^h - 1)$. Then $(10^h - 1)a = nq$, so $a(10^h - 1) \equiv 0 \pmod{p}$. By definition of k, we must have $k|h$. Therefore $k = h$, finishing the proof.