Lecture 11
Square Roots, Tonelli’s Algorithm, Number of Consecutive Pairs of Squares mod p

Defined the Jacobi Symbol - used to compute Legendre Symbol efficiently (quadratic character)

Eg.

\[(1729|223) = (168|223) = (4 \cdot 42|223) = (42|223)
= (2|223)(21|223) = (21|223) = (23|21) = (13|21)
= (21|13) = (8|13) = (2|13) = -1\]

\[(-1|p) = \begin{cases} -1 & \text{if } p \equiv 3 \mod 4 \\ 1 & \text{if } p \equiv 1 \mod 4 \end{cases}\]

\[(2|p) = \begin{cases} -1 & \text{if } p \equiv \pm 3 \mod 8 \\ 1 & \text{if } p \equiv \pm 1 \mod 8 \end{cases}\]

Lemma 43. If \(p, q, r\) are distinct odd primes, and \(q \equiv r \mod 4\), then \((p|q) = (p|r)\).

Proof. We know \((q|p) = (r|p)\) since \(q \equiv r \mod p\). Also, \(q\) and \(r\) are both either 1 mod 4 or both 3 mod 4. So

\[\left(-1\right)^{\frac{p-1}{2} \frac{q-1}{2}} = \left(-1\right)^{\frac{p-1}{2} \frac{r-1}{2}}\]

\[\left(q/p\right) = \left(q|r\right)\left(-1\right)^{\frac{p-1}{2} \frac{q-1}{2}}\]

\[= \left(r/p\right)\left(-1\right)^{\frac{p-1}{2} \frac{r-1}{2}}\]

\[= (p|r)\]

\[\blacksquare\]

Eg. Characterize the primes \(p\) for which 17 is a square mod \(p\). It’s clear that 17 is square mod 2. We see that since 17 \(\equiv 1 \mod 4\), so if \(q \equiv r \mod 17\) then \((17|q) = (17|r)\). So we only need to look mod 17 to see when \((17|q) = (q|17) = 1\). Go through mod 17: \(\pm 1, \pm 2, \pm 4, \pm 8\) mod 17 are nonzero square classes, so 17 is a square mod \(q\) if \(q = 2, 17, \text{ or } \pm 1, \pm 2, \pm 4, \pm 8 \mod 17\).

If we had asked for 19, we need to look at classes mod \((4 \cdot 19)\), since 19 \(\not\equiv 1 \mod 4\). (If \(q = 1 \mod 4\) then \((19|q) = (q|19)\), so we need \(q\) to be a square mod 19. If \(q = 3 \mod 4\) then \((19|q) = -(q|19)\), we need \(q\) to be not square mod 19)

Euclidean gcd Algorithm - Given \(a, b \in \mathbb{Z}\), not both 0, find \((a, b)\)
1. If $a, b < 0$, replace with negative

2. If $a > b$, switch a and b

3. If $a = 0$, return b

4. Since $a > 0$, write $b = aq + r$ with $0 \leq r < a$. Replace (a, b) with (r, a) and go to Step 3.

Tonelli’s Algorithm - To compute square roots mod p (used to solve $x^2 \equiv a \mod p$). Need a quadratic non-residue mod p, called n. Let g be a primitive root mod p. Now let $p - 1 = 2^st$, for t odd. We know n is a power of g, say $n \equiv g^k$. Set $c \equiv n^t \equiv g^{kt}$.

Claim: The order of c is exactly 2^s.

Proof.

$$c^{2^s} \equiv (g^{kt})^{2^s}$$
$$\equiv (g^{t^{2^s}})^k$$
$$\equiv (g^{p-1})^k$$
$$\equiv 1 \mod p$$

So $\text{ord}(c)$ has to divide 2^s, so it’s a power of 2. If we can show that $c^{2^s-1} \neq 1 \mod p$ then order has to be 2^s.

$$c^{2^s-1} \equiv (g^{kt})^{2^s-1}$$
$$\equiv (g^{t^{2^s-1}})^k$$
$$\equiv (g^{(p-1)/2})^k \mod p$$
$$\equiv (-1)^k \mod p$$

Note that k is odd since otherwise $n \equiv g^k$ would be a quadratic residue, so we get $c^{2^s-1} \equiv -1 \mod p$, proving claim that $\text{ord}(c) = 2^s$. ■

Lemma 44. If a, b are coprime to p and have order $2^j \mod p$ (for $j > 0$) then ab has order 2^k for some $k < j$.

Proof. Since $a^{2^j} \equiv 1 \mod p$, $(a^{2^j-1})^2 \equiv 1 \mod p$, we have $a^{2^j-1} \equiv \pm 1 \mod p$. So we must have $a^{2^j-1} \equiv -1 \mod p$, since $\text{ord}(a) = 2^j$. Similarly $b^{2^j-1} \equiv -1 \mod p$. Therefore, $(ab)^{2^j-1} \equiv 1 \mod p$, so order has to divide 2^j-1, so $k < j$. ■
Proof of Tonelli’s Algorithm. First check (by repeated squaring) if \(a^{(p-1)/2} \equiv 1 \mod p \). If not, terminate with “false.” So assume now on that \(a^{(p-1)/2} \equiv 1 \mod p \).

Set \(A = a \) and \(b = 1 \). At each step \(a = Ab^2 \pmod{p} \). At the end, want \(A = 1 \), so \(b \) is square root of \(a \) \mod p.

Each step: decrease the power of 2 dividing the order of \(A \). To start with, \(A^{(p-1)/8} = A^{(p-1)/2} \equiv 1 \mod p \). Check if \(A^{(p-1)/4} \equiv 1 \mod p \).

If not, then \(A^{2s-2t} \equiv -1 \mod p \). So powers of 2 dividing \(\text{ord}(A) \) is exactly \(2^{s-1} \). Same as the power of 2 dividing \(\text{ord}(c^2) = 2^{s-1} \). So set \(A = Ac^{-2} \), \(b = bc \mod p \). Notice that

\[
(Ac^{-2})^{2s-2t} = \frac{A^{2s-2t}}{c^{2s-11t}}
\equiv (-1)^t (-1)^t
\equiv 1 \mod p
\]

\(\text{ord}(Ac^{-2}) \) divides \(2s-2t \), so power of 2 dividing the order is at most \(2s-2 \), so has decreased by 1.

If yes, (ie., \(A^{2s-2t} \equiv 1 \mod p \)), do nothing.

Next step: check if \(A^{2s-7t} = A^{(p-1)/8} \equiv 1 \mod p \).

If no, (ie., \(A^{2s-3t} \equiv -1 \mod p \)), set \(A := Ac^{-4} \), \(b := bc^2 \) (\(c^4 \) has order \(2s-2 \)).

(\(Ac^{-4} \))\(^{2s-3t} \equiv 1 \).

If yes, do nothing.

After at most \(s \) steps we’ll reach the stage when \(a = Ab^2 \mod p \) and the power of 2 dividing \(\text{ord}(A) \) is 1 - ie., \(\text{ord}(A) \) is odd. Now we just compute a square root of \(A \) as follows: \(\text{ord}(A) \) odd and divides \(p-1 = 2^{s}t \), so divides \(t \). So \(A^t \equiv 1 \mod p \) (\(t \) odd). Claim \(A^{(t+1)/2} \) is a square root of \(A \) \mod p.

\[
\left(A^{(t+1)/2}\right)^2 = A^{t+1}
= A^t A
\equiv 1 \cdot A
\equiv A \mod p
\]

So algorithm just returns \(bA^{(t+1)/2} \) as \(\sqrt{a} \) ■

Eg. If \(p \equiv 3 \mod 4 \), \(a \) is quadratic residue \mod p, then a square root of \(a \) is \(a^{(p+1)/4} \) (square = \(a^{(p+1)/2} = a^{(p-1)/2} a \equiv a \mod p \))

Efficient poly-log time assuming we can find a quadratic non-residue \(n \) efficiently. A random number is quadratic non-residue with probability \(\frac{1}{2} \) so if
we run k trials, probability of not getting a quadratic non-residue is $\frac{1}{2^k}$ which is $\frac{1}{p^k}$ if k is $\log p$. So, this is an efficient randomized algorithm. No efficient deterministic algorithm has yet been found. Simplest is to check all primes, expect quadratic non-residue mod p which is less than $c(\log(p))^2 \Rightarrow$ true if assume ERH.

Question: Pairs of squares problem. How many numbers $x \mod p$ such that x and $x + 1 \mod p$ are both squares mod p?

Rough heuristic - if $x, x + 1$ were independent, roughly $\frac{p}{4}$ solutions.

Define $(0|p) = 0$. Then $\sum_{x \mod p} (x|p) = 0$. Also, number of solutions to $y^2 \equiv x \mod p$ for fixed x is $1 + (x|p)$. Also, if $x \neq 0$ then $\frac{1}{2}(1 + (x|p))$ is 1 if x is a square, 0 if x is not a square.

So, number of x that $x, x + 1$ are squares:

$$1 \cdot \sum_{x=0} \frac{1}{2} (1 + (-1|p)) + \frac{1}{2} \sum_{x=0-1} \frac{1}{2} (1 + (x|p)) \cdot \frac{1}{2} (1 + (x + 1|p))$$

Now

$$\sum_{x \mod p} \frac{1}{4} (1 + (x|p) + (x + 1|p) + (x|p)(x + 1|p))$$
\[
\frac{1}{4} \sum 1 = \frac{p - 2}{4}
\]
\[
\frac{1}{4} \sum (x|p) = \frac{1}{4} \left(\sum_{\text{all}} (x|p) - (0|p) - (-1|p) \right)
\]
\[
= -\frac{1}{4}(-1|p)
\]
\[
\frac{1}{4} \sum (x + 1|p) = \frac{1}{4} \left(\sum_{\text{all}} (x + 1|p) - (1|p) - (0|p) \right)
\]
\[
= -\frac{1}{4}
\]
\[
\frac{1}{4} \sum (x|p)(x + 1|p) = \frac{1}{4} \sum (x|p)^{-1}(x + 1|p)
\]
\[
= \frac{1}{4} \sum \left(\left(\frac{x + 1}{x} \right)^{-1} \right)
\]
\[
= \frac{1}{4} \sum_{x \neq 0, -1} \left(1 + \frac{1}{x} \right)
\]
\[
= \frac{1}{4} \sum_{x \neq 0, -1} (x|p)
\]
\[
= -\frac{1}{4}
\]

Add them up to get
\[
\frac{p + 2 + (-1|p)}{4}
\]

If we want \(x - 1, x, x + 1 \) to all be squares, much more complicated
18.781 Theory of Numbers
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.