Lecture 3
Binomial Coefficients, Congruences

\[n(n-1)(n-2)\ldots 1 = n! = \text{number of ways to order } n \text{ objects.} \]

\[n(n-1)(n-2)\ldots (n-k+1) = \text{number of ways to order } k \text{ of } n \text{ objects.} \]

\[\frac{n(n-1)(n-2)\ldots (n-k+1)}{k!} = \text{number of ways to pick } k \text{ of } n \text{ objects. This is called a} \]

(Definition) Binomial Coefficient:

\[\binom{n}{k} = \frac{n!}{(n-k)!k!} \]

Proposition 10. The product of any \(k \) consecutive integers is always divisible by \(k! \).

Proof. Wlog, suppose that the \(k \) consecutive integers are \(n-k+1, n-k+2 \ldots n-1, n \). If \(0 < k \leq n \), then

\[\frac{(n-k+1)\ldots (n-1)n}{k!} = \frac{n!}{(n-k)!k!} = \binom{n}{k} \]

which is an integer. If \(0 \leq n < k \), then the sequence contains 0 and so the product is 0, which is divisible by \(k! \). If \(n < 0 \), then we have

\[\prod_{i=1}^{k} (n-k+i) = (-1)^{k} \prod_{i=0}^{k-1} (-n + k - i) \]

which is comprised of integers covered by above cases.

We can define a more general version of binomial coefficient

(Definition) Binomial Coefficient: If \(\alpha \in \mathbb{C} \) and \(k \) is a non-negative integer,

\[\binom{\alpha}{k} = \frac{(\alpha)(\alpha-1)\ldots(\alpha-k+1)}{k!} \in \mathbb{C} \]

Theorem 11 (Binomial Theorem). For \(n \geq 1 \) and \(x, y \in \mathbb{C} \):

\[(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} \]

Proof.

\[(x+y)^n = (x+y)(x+y)\ldots (x+y) \quad \text{\(n \text{ times} \)} \]
To get coefficient of $x^k y^{n-k}$ we choose k factors out of n to pick x, which is the number of ways to choose k out of n.

Theorem 12 (Generalized Binomial Theorem). For $\alpha, z \in \mathbb{C}, |z| < 1$,

\[(1 + z)^\alpha = \sum_{k=0}^{\infty} \binom{\alpha}{k} z^k\]

Proof. We didn’t go through the proof, but use the fact that this is a convergent series and Taylor expand around 0

\[f(z) = a_0 + a_1 z + a_2 z^2 \ldots \quad a_n = \frac{f^{(k)}(z)}{k!} \bigg|_{z=0}\]

Pascal’s Triangle: write down coefficients $\binom{n}{k}$ for $k = 0 \ldots n$

\[
\begin{array}{cccc}
n = 0: & & & 1 \\
n = 1: & & 1 & 1 \\
n = 2: & 1 & 2 & 1 \\
n = 3: & 1 & 3 & 3 & 1 \\
n = 4: & 1 & 4 & 6 & 4 & 1 \\
n = 5: & 1 & 5 & 10 & 10 & 5 & 1 \\
\end{array}
\]

* each number is the sum of the two above it

Note:

\[
\binom{m+1}{n+1} = \binom{m}{n} + \binom{m}{n+1}
\]

Proof. We want to choose $n + 1$ elements from the set $\{1, 2, \ldots m + 1\}$. Either $m + 1$ is one of the $n + 1$ chosen elements or it is not. If it is, task is to choose n from m, which is the first term. If it isn’t, task is to choose $n + 1$ from m, which is the second term.

Number Theoretic Properties

- Factorials - let p be a prime and n be a natural number. Question is “what power of p exactly divides $n!$?”

Notation: For real number x, then $\lfloor x \rfloor$ is the highest integer $\leq x$
Claim

\[p^e \mid n!, \; e = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor \ldots \]

|| means exactly divides \(\Rightarrow p^e \mid n!, \; p^{e+1} \nmid n! \)

Proof. \(n! = n(n-1) \ldots 1\)

\[\left\lfloor \frac{n}{p} \right\rfloor = \text{number of multiples of } p \text{ in } \{1, 2, \ldots n\} \]

\[\left\lfloor \frac{n}{p^2} \right\rfloor = \text{number of multiples of } p^2 \text{ in } \{1, 2, \ldots n\}, \text{ etc.} \]

\[\left\lfloor \frac{n}{p^3} \right\rfloor = \text{number of multiples of } p^3 \text{ in } \{1, 2, \ldots n\}, \text{ etc.} \]

\[\left\lfloor \frac{n}{p^k} \right\rfloor = \text{number of multiples of } p^k \text{ in } \{1, 2, \ldots n\}, \text{ etc.} \]

Note: There is an easy bound on \(e\):

\[e = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \cdots \]

\[\leq \frac{n}{p} + \frac{n}{p^2} + \frac{n}{p^3} \cdots \]

\[\leq \frac{n}{1 - \frac{1}{p}} \]

\[\leq \frac{n}{p - 1} \]

Proposition 13. Write \(n\) in base \(p\), so that \(n = a_0 + a_1p + a_2p^2 \ldots a_kp^k\), with \(a_i \in \{0, 1 \ldots p - 1\}\). Then

\[e(a, p) = \frac{n - (a_0 + a_1 \cdots + a_k)}{p - 1} \]
Proof. With the above notation, we have

\[\left\lfloor \frac{n}{p} \right\rfloor = a_1 + a_2 p \ldots a_k p^{k-1} \]

\[\left\lfloor \frac{n}{p^2} \right\rfloor = a_2 + a_3 p \ldots a_k p^{k-1}, \text{ etc.} \]

\[\vdots \]

\[a_0 = n - p \left\lfloor \frac{n}{p} \right\rfloor \]

\[a_1 = \left\lfloor \frac{n}{p} \right\rfloor - p \left\lfloor \frac{n}{p^2} \right\rfloor, \text{ etc.} \]

\[\vdots \]

\[\sum_{i=0}^{k} a = n - (p - 1) \left(\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor \ldots \right) \]

\[\sum_{i=0}^{k} a = n - (p - 1)(e) \]

\[e = \frac{n - \sum_{i=0}^{k} a}{p - 1} \]

\[\blacksquare \]

Corollary 14. The power of prime \(p \) dividing \(\binom{n}{k} \) is the number of carries when you add \(k \) to \(n - k \) in base \(p \) (and also the number of carries when you subtract \(k \) from \(n \) in base \(p \)).

Some nice consequences:

- Entire \((2^k - 1)\)th row of Pascal’s Triangle consists of odd numbers
- \(2^n \)th row of triangle is even, except for 1s at the end
- \(\binom{n}{p} \) is divisible by prime \(p \) for \(0 < k < p \) (\(p \) divides numerator and not denominator)
- \(\binom{n^e}{k} \) is divisible by prime \(p \) for \(0 < k < p^e \)

(Definition) **Congruence:** Let \(a, b, m \) be integers, with \(m \neq 0 \). We say \(a \) is congruent to \(b \) modulo \(m \) (\(a \equiv b \mod m \)) if \(m | (a - b) \) (i.e., \(a \) and \(b \) have the same remainder when divided by \(m \)).

Congruence compatible with usual arithmetic operations of addition and multiplication.
ie., if \(a \equiv b \mod m\) and \(c \equiv d \mod m\)

\[
\begin{align*}
 a + c &\equiv b + d \pmod{m} \\
 ac &\equiv bd \pmod{m}
\end{align*}
\]

Proof.

\[
\begin{align*}
 a &= b + mk \\
 c &= d + ml \\
 a + c &= b + d + m(k + l) \\
 ac &= bd + bml + dmk + m^2kl \\
 &= bd + m(bl + dk + mkl)
\end{align*}
\]

\[\blacksquare\]

* This means that if \(a \equiv b \mod m\), then \(a^k \equiv b^k \mod m\), which means that if \(f(x)\) is some polynomial with integer coefficients, then \(f(a) \equiv f(b) \mod m\)

NOT TRUE: if \(a \equiv b \mod m\) and \(c \equiv d \mod m\), then \(a^c \equiv b^d \mod m\)

NOT TRUE: if \(ax \equiv bx \mod m\), then \(a \equiv b \mod m\) (essentially because \((x,m) > 1\)). But if \((x,m) = 1\), then true.

Proof. \(m | (ax - bx) = (a - b)x\), \(m\) coprime to \(x\) means that \(m | (a - b)\)

\[\blacksquare\]