These problems are related to the material covered in Lectures 21-22. I have made every effort to proof-read them, but some errors may remain. The first person to spot each error will receive 1-5 points of extra credit.

The problem set is due by the start of class on 12/3/2013 and should be submitted electronically as a pdf-file e-mailed to the instructor. You can use the latex source for this problem set as a template for writing up your solutions; be sure to include your name in your solutions and to identify collaborators and any sources not listed in the syllabus.

Recall that we have defined a curve as a smooth projective variety of dimension one (and varieties are defined to be irreducible algebraic sets).

Problem 1. Bezout’s theorem (50 points)

In this problem k is an algebraically closed field.

A curve in \mathbb{P}^2 is called a plane curve.¹

(a) Prove that every plane curve X/k is a hypersurface, meaning that its ideal $I(X)$ is of the form (f), where f is a homogeneous polynomial in $k[x,y,z]$. Then show that every generator for $I(X)$ has the same degree.

The degree of X (denoted $\deg X$) is the degree of any generator for its homogeneous ideal.

(b) Let F/k be a function field, let P be a place of F, and let $f \in \mathcal{O}_P$. Prove that the ring $\mathcal{O}_P/(f)$ is a k-vector space of dimension $\ord_P(f)$.

Given a nonconstant homogeneous polynomial $g \in k[x,y,z]$ that is relatively prime to f, we can represent g as an element of the local ring $\mathcal{O}_{X,P}$ of functions in X that are regular at P by picking a homogeneous polynomial h that does not vanish at P and representing g as g/h reduced modulo $I(X)$, an element of $k(X)$. Note that in terms of computing $\ord_P(g)$ it makes no difference which h we pick, $\ord_P(g)$ will always be equal to the order of vanishing of g at P, a nonnegative integer. We then define the divisor of g in $\text{Div}_k X$ to be

$$\text{div}_X g = \sum \ord_P(g) P.$$

Note that $\text{div}_X g$ is not a principal divisor.² Indeed, $\deg \text{div}_X g$ is never zero.

(c) Prove that $\deg \text{div}_X g$ depends only on $\deg g$ (i.e. $\deg \text{div}_X g = \deg \text{div}_X h$ whenever g and h have the same degree and are both relatively prime to f). Then prove that $\deg \text{div}_X g$ is a linear function of $\deg g$.

Now suppose that g is irreducible and nonsingular, so it defines a plane curve Y/k.

(d) Prove that $\deg \text{div}_Y f = \deg \text{div}_X g$.

¹Plane curves are not usually required to be smooth or irreducible, but ours are.
²By varying h locally we eliminate the poles that would be present if we fixed a global choice for h.
Definition 1. Let \(f \) and \(g \) be two nonconstant homogeneous polynomials in \(k[x, y, z] \) with no common factor, and let \(P \) be a point in \(\mathbb{P}^2 \). The **intersection number** of \(f \) and \(g \) at \(P \) is

\[
I_P(f, g) := \text{dim}_k \mathcal{O}_{\mathbb{P}^2, P}/(f, g)
\]

Here \(\mathcal{O}_{\mathbb{P}^2, P} \) denotes the ring of functions in \(k(\mathbb{P}^2) \) that are regular at \(P \), and \(f \) and \(g \) are represented as elements of this ring by choosing homogeneous denominators of appropriate degree that do not vanish at \(P \), exactly as described above.

As above, let \(X/k \) and \(Y/k \) denote plane curves defined by relatively prime homogeneous polynomials \(f \) and \(g \), and let \(I(f, g) = \sum P I_P(f, g) \).

(e) Prove that \(I(f, g) \) is equal to \(\text{deg div}_X g = \text{deg div}_Y f \).

(f) Prove **Bezout’s Theorem** for plane curves:

\[
I(f, g) = \text{deg } f \text{ deg } g.
\]

In fact Bezout’s theorem holds even when \(f \) and \(g \) are not necessarily irreducible and nonsingular, but you need not prove this. It should be clear that \(f \) and \(g \) do not need to be irreducible; just factor them and apply the theorem to all pairs of factors. You proof should also handle cases where just one of \(f \) or \(g \) is singular; it takes a bit more work to handle the case where both \(f \) and \(g \) are singular and intersect at a common singularity. The assumption that \(k = \overline{k} \) is necessary, in general, but the inequality \(I(f, g) \leq \text{deg } f \text{ deg } g \) always holds.

Problem 2. Derivations and differentials (50 points)

A **derivation** on a function field \(F/k \) is a \(k \)-linear map \(\delta : F \to F \) such that

\[
\delta(fg) = \delta(f)g + f\delta(g).
\]

for all \(f, g \in F \).

(a) Prove that the following hold for any derivation \(\delta \) on \(F/k \):

(i) \(\delta(c) = 0 \) for all \(c \in k \).

(ii) \(\delta(f^n) = nf^{n-1}\delta(f) \) for all \(f \in F^\times \) and \(n \in \mathbb{Z} \).

(iii) If \(k \) has positive characteristic \(p \) then \(\delta(f^p) = 0 \) for all \(f \in F \).

(iv) \(\delta(f/g) = (\delta(f)g - f\delta(g))/g^2 \) for all \(f, g \in F \) with \(g \neq 0 \).

To simplify matters, we henceforth assume that \(k \) has characteristic zero.\(^3\)

The simplest example of a derivation is in the case where \(F = k(x) \) is the rational function field and \(\delta : F \to F \) is the map defined by \(\delta(f) = \partial f/\partial x \). We want to generalize this example to arbitrary function fields.

\(^3\)For those who are interested, the key thing that changes in characteristic \(p > 0 \) is that everywhere we require an element \(x \) to be transcendental we need to additionally require it to be a **separating element**, which means that \(F/k(x) \) is a separable extension.
Let x be a transcendental element of F/k. Any $y \in F$ is then algebraic over $k(x)$ and has a minimal polynomial $\lambda \in k(x)[T]$. After clearing denominators we can assume that $\lambda \in k[x,T]$. We now formally define

$$\frac{\partial y}{\partial x} := -\frac{\partial \lambda/\partial x}{\partial \lambda/\partial T}(y) \in k(x,y) \subseteq F$$

and let the map $\delta_x : F \to F$ send y to $\partial y/\partial x$.

One can show (but you are not asked to do this) that δ_x is a derivation on F/k. Note that we get a derivation δ_x for each transcendental x in F. Now let D_F be the set of all derivations on F/k.

(b) Let x be a transcendental element of F/k. Prove that for any $\delta_1, \delta_2 \in D_F$ we have $\delta_1(x) = \delta_2(x) \Rightarrow \delta_1 = \delta_2$. Conclude that δ_x is the unique $\delta \in D_F$ for which $\delta(x) = 1$.

(c) Prove the following:

(i) For all $\delta_1, \delta_2 \in D_F$ the map $(\delta_1 + \delta_2) : F \to F$ defined by $f \mapsto \delta_1(f) + \delta_2(f)$ is a derivation (hence an element of D_F).

(ii) For all $f \in F$ and $\delta \in D_F$ the map $(f\delta) : F \to F$ defined by $g \mapsto f\delta(g)$ is a derivation (hence an element of D_F).

(iii) Every $\delta \in D_F$ satisfies $\delta = \delta(x)\delta_x$ (in particular, the chain rule $\delta_y = \delta_y(x)\delta_x$ holds for any transcendental $x, y \in F/k$).

It follows that we may view D_F as one-dimensional F-vector space with any δ_x as a basis vector. But rather than fixing a particular basis vector; instead, let us define a relation on the set S of pairs (u, x) with $u, x \in F$ and x transcendental over k:

$$(u, x) ~ (v, y) \iff v = u\delta_y(x). \quad (1)$$

(d) Prove that \sim is an equivalence relation on S.

For each transcendental element $x \in F/k$, let the symbol dx denote the equivalence class of $(1, x)$, and for $u \in F$ define udx to be the equivalence class of (u, x); we call dx a differential. It follows from part (iii) of (d) that every derivation δ can be uniquely represented as $\delta = udx$ for some $u \in F$, but now we have the freedom to change representations; we may also write $\delta = vdy$ for any transcendental element y, where $v = u\delta_y(x) = u\partial x/\partial y$.

(e) Prove that $d(x+y) = dx+dy$ and $d(xy) = xdy+ydx$ for all transcendental $x, y \in F/k$.

Let us now extend our differential notation to elements of F that are not transcendental over k. Recall that k is algebraically closed in F, so we only need to consider elements of k.

(f) Prove that defining $da = 0$ for all $a \in k$ ensures that (e) holds for all $x, y \in F$, and that no other choice does.

Now momentarily forget everything above and just define Δ_F to the F-vector space generated by the set of formal symbols $\{dx : x \in F\}$, subject to the relations

$$\begin{align*}
(1) & \quad d(x+y) = dx + dy, \quad (2) d(xy) = xdy + ydx, \quad (3) da = 0 \text{ for } a \in k.
\end{align*}$$

Note that x and y denote elements of F (functions), not free variables, so Δ_F reflects the structure of F and will be different for different function fields.
(g) Prove that dim$_F$ $\Delta_F = 1$, and that any dx with $x \notin k$ is a basis.

The set $\Delta = \Delta_F$ is often used as an alternative to the set of Weil differentials Ω. They are both one-dimensional F-vector spaces, hence isomorphic (as F-vector spaces). But in order to be useful, we need to associate divisors to differentials in Δ, as we did for Ω.

For any differential $\omega \in \Delta$ and any place P, we may pick a uniformizer t for P and write $\omega = wdt$ for some function $w \in F$ that depends on our choice of t; note that t is necessarily transcendental over k, since it is a uniformizer. We then define ord$_P(\omega) :=$ ord$_P(w)$, and the divisor of ω is then given by

$$\text{div} \omega := \sum_P \text{ord}_P(\omega)P.$$

As in Problem 1, the value ord$_P(\omega)$ does not depend on the choice of the uniformizer t.

(h) Prove that div $udv = \text{div} u + \text{div} dv$ for any $u, v \in F$. Conclude that the set of nonzero differentials in Δ constitutes a linear equivalence class of divisors.

(i) Let $F = k(t)$ be the rational function field. Compute div dt and prove that it is a canonical divisor. Conclude that a divisor $D \in \text{Div}_k C$ is canonical if and only if $D = \text{div} df$ for some transcendental $f \in F$.

Part (i) holds for arbitrary curves, but you are not asked to prove this. It follows that the space of differentials Δ plays the same role as the space of Weil differentials Ω, and it has the virtue of making explicit computations much easier.

(j) Prove that the curve $x^2 + y^2 + z^2$ over \mathbb{Q} has genus 0 (even though it is not isomorphic to \mathbb{P}^1 because it has no rational points) by explicitly computing a canonical divisor.

Problem 3. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 = “mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”). Also estimate the amount of time you spent on each problem.

<table>
<thead>
<tr>
<th></th>
<th>Interest</th>
<th>Difficulty</th>
<th>Time Spent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please rate each of the following lectures that you attended, according to the quality of the material (1 = “useless”, 10 = “fascinating”), the quality of the presentation (1 = “epic fail”, 10 = “perfection”), the pace (1 = “way too slow”, 10 = “way too fast”), and the novelty of the material (1 = “old hat”, 10 = “all new”).

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture Topic</th>
<th>Material</th>
<th>Presentation</th>
<th>Pace</th>
<th>Novelty</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/19</td>
<td>Riemann’s inequality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/21</td>
<td>The Riemann-Roch theorem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feel free to record any additional comments you have on the problem sets or lectures; in particular, how you think they might be improved.
18.782 Introduction to Arithmetic Geometry
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.