These problems are related to the material covered in Lectures 22-23. I have made every effort to proof-read them, but some errors may remain. The first person to spot each error will receive 1-5 points of extra credit.

The problem set is due by the start of class on 12/10/2013 and should be submitted electronically as a pdf-file e-mailed to the instructor. You can use the latex source for this problem set as a template for writing up your solutions; be sure to include your name in your solutions and to identify collaborators and any sources not listed in the syllabus.

As usual, a curve is a smooth projective (irreducible) variety of dimension one.

Problem 1. A genus 1 curve with no rational points (30 points)

Consider the homogeneous polynomial

\[f(x, y, z) = x^3 + 2y^3 + 4z^3. \]

(a) Prove that the zero locus of \(f \) is a plane curve \(C/\mathbb{Q} \).

(b) Prove that \(C \) has genus one.

(c) Prove that \(C \) has no \(\mathbb{Q} \)-rational points (so it is not an elliptic curve over \(\mathbb{Q} \)).

Problem 2. Hyperelliptic curves (70 points)

A hyperelliptic curve \(C/k \) is a curve of genus \(g \geq 2 \) whose function field is a separable quadratic extension of the rational function field \(k(x) \). The non-trivial element of \(\text{Gal}(k(C)/k(x)) \) is called the hyperelliptic involution. In this problem we consider hyperelliptic curves over a perfect field \(k \) whose characteristic is not 2 (so every quadratic extension of \(k(x) \) is separable).

(a) Let \(C/k \) be a hyperelliptic curve of genus \(g \). Prove that \(C \) can be defined by an affine equation of the form \(y^2 = f(x) \), where \(f \in k[x] \) is a polynomial of degree \(2g + 1 \) or \(2g + 2 \) (so \(C \) is the desingularization of the projective closure of this affine variety). (hint: consider the Riemann-Roch spaces \(\mathcal{L}(nD) \) where \(D \) is the pole divisor of \(x \), and proceed along the lines of the first part of the proof of Theorem 23.3; as a first step, figure out what the degree of \(D \) must be).

(b) Prove that the polynomial \(f \) in part (a) can be made squarefree, and that \(y^2 - f(x) \) is irreducible in \(k[x, y] \). Then show that if \(k \) is algebraically closed one can make \(f \) monic and of degree \(2g + 1 \).

(c) Let \(f \) be any squarefree polynomial in \(k[x] \) of degree \(d \geq 5 \). Prove that the curve defined by \(y^2 = f(x) \) is a hyperelliptic curve of genus \(g \leq (d - 1)/2 \).

(d) Let \(C/k \) be a hyperelliptic curve of genus \(g \) defined by \(y^2 = f(x) \) with \(f \) squarefree of degree \(d \), where \(k \) is algebraically closed. Prove that there are at least \(d \) distinct places of \(k(C) \) that are fixed by the hyperelliptic involution, but not every place of \(k(C) \) is fixed by the hyperelliptic involution.
(e) Let C/k be a function field of genus g over an algebraically closed field k, and let σ be an automorphism of $k(C)$ that fixes k. Prove that if σ does not fix every place of $k(C)$ then it fixes at most $2g + 2$ places. (hint: show that there is a nonconstant function $x \in \mathcal{L}((g+1)P)$, where P is a place not fixed by σ, and then show that every place fixed by σ corresponds to a zero of $\sigma(x) - x$).

(f) Using (b), (c), and (d), prove that every equation of the form $y^2 = f(x)$ with $f \in k[x]$ a squarefree polynomial of degree $d \geq 5$ defines a hyperelliptic curve C/k of genus $g = \lceil \frac{d-1}{2} \rceil$. Your proof should work whether or not k is algebraically closed.

(g) Prove that every curve of genus 2 is hyperelliptic (hint: first show there exists an effective canonical divisor W, then consider a non-constant $x \in \mathcal{L}(W)$).

Problem 3. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 = “mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”). Also estimate the amount of time you spent on each problem.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Interest</th>
<th>Difficulty</th>
<th>Time Spent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please rate each of the following lectures that you attended, according to the quality of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”), and the novelty of the material (1=“old hat”, 10=“all new”).

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture Topic</th>
<th>Material</th>
<th>Presentation</th>
<th>Pace</th>
<th>Novelty</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/26</td>
<td>Elliptic curves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/3</td>
<td>Isogenies and torsion points</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/5</td>
<td>The Mordell-Weil theorem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feel free to record any additional comments you have on the problem sets or lectures; in particular, how you think they might be improved.
18.782 Introduction to Arithmetic Geometry
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.