These problems are related to the material covered in Lectures 8-9. I have made every effort to proof-read them, but there are may be errors that I have missed. The first person to spot each error will receive 1-5 points of extra credit.

The problem set is due by the start of class on 10/08/2013 and should be submitted electronically as a pdf-file e-mailed to the instructor. You can use the latex source for this problem set as a template for writing up your solutions; be sure to include your name in your solutions and remember to identify all collaborators and any sources that you consulted that are not listed in the syllabus.

Problem 1. A stronger form of Hensel’s lemma. (30 points)

(a) Let \(f \in \mathbb{Z}_p[x] \) and suppose \(|f(a)|_p < |f'(a)|_p^2 \) for some \(a \in \mathbb{Z}_p \). Let \(a_1 = a \), and for \(n \geq 1 \) let
\[
a_{n+1} = a_n - f(a_n)/f'(a_n).
\]
Prove that this defines a Cauchy sequence \((a_n)\) in \(\mathbb{Z}_p \) whose limit \(b \) uniquely satisfies \(f(b) = 0 \) and \(|a - b|_p < |f'(b)|_p \), and moreover, \(|f(a)|_p = |f'(b)|_p \). (you may find it helpful to reword this in terms of \(v_p \) and work with congruences modulo powers of \(p \)).

(b) Prove that the hypothesis in (a) is necessary in the following sense. Suppose that \(b \) is a simple root of a polynomial \(f \in \mathbb{Z}_p[x] \). Prove that for any \(a \in \mathbb{Z}_p \), if \(|a - b|_p < |f'(b)|_p \) then \(|f(a)|_p < |f'(a)|_p^2 \). Conclude that if no \(a \in \mathbb{Z}_p \) satisfies the hypothesis of (a), then \(f(x) \) does not have a simple root in \(\mathbb{Z}_p \).

(c) Use (a) to compute a square root of 57 in \(\mathbb{Z}_2 \) to 16 digits of 2-adic precision using \(a = 1 \). How many \(a_n \) do you need to compute to achieve this precision?

Problem 2. A faster form of Hensel’s lemma. (20 points)

(a) Let \(R \) be a commutative ring, let \(f \in R[x] \), and let \(m \in R \). Suppose that \(x_0, z_0 \in R \) satisfy \(f(x_0) \equiv 0 \mod m \) and \(f'(x_0)z_0 \equiv 1 \mod m \) (note that \(a \equiv b \mod m \) simply means that \(a - b \) is an element of the \(R \)-ideal \((m)) \). Let
\[
x_1 = x_0 - f(x_0)z_0,
\]
\[
z_1 = 2z_0 - f'(x_1)z_0^2.
\]
Prove that
\[
(i) \ x_1 \equiv x_0 \mod m,
(ii) \ f(x_1) \equiv 0 \mod m^2,
(iii) \ f'(x_1)z_1 \equiv 1 \mod m^2,
\]
and that (i) and (ii) uniquely characterize \(x_1 \) modulo \(m^2 \).

(b) Use part (a) to compute a cube-root of 9 in the ring \(\mathbb{Z}_{10} \) to 64 digits of 10-adic precision by working modulo \(10, 10^2, 10^4, 10^8, 10^{16}, 10^{32}, 10^{64} \).

(c) Prove that Fermat’s last theorem is false in \(\mathbb{Z}_{10} \).
Problem 3. Applications of Hensel’s lemma (50 points)

Recall that every element of \(\mathbb{Q}_p^\times \) can be uniquely written as \(p^ru \) with \(r \in \mathbb{Z} \) and \(u \in \mathbb{Z}_p^\times \). Let \(\mathbb{Q}_p^{\times n} = \{ x^n : x \in \mathbb{Q}_p \} \) denote the set of \(n \)th powers in \(\mathbb{Q}_p^\times \).

(a) For all odd primes \(p \), prove that \(p^ru \) is a square in \(\mathbb{Q}_p^\times \) if and only if \(r \) is even and \(u \) is a square modulo \(p \). Conclude that \(\mathbb{Q}_p^\times /\mathbb{Q}_p^{\times 2} \cong (\mathbb{Z}/2\mathbb{Z})^2 \) (as finite abelian groups).

(b) Using the strong form of Hensel’s lemma, prove that \(2^ru \) is a square in \(\mathbb{Q}_2^\times \) if and only if \(r \) is even and \(u \equiv 1 \mod 8 \). Conclude that \(\mathbb{Q}_2^\times /\mathbb{Q}_2^{\times 2} \cong (\mathbb{Z}/2\mathbb{Z})^3 \).

(c) Determine the structure of \(\mathbb{Q}_p^\times /\mathbb{Q}_p^{\times n} \) for all primes \(p \) and odd primes \(n \).

Let \(\mu_{n,p} = \{ x \in \mathbb{Q}_p : x^n = 1 \} \) denote the set of \(n \)th roots of unity in \(\mathbb{Q}_p \).

(d) Prove that \(\mu_{n,p} \) is a subgroup of \(\mathbb{Z}_p^\times \).

(e) Use Hensel’s lemma to prove that for \(p \nmid n \) the group \(\mu_{n,p} \) is cyclic of order \(\gcd(n,p-1) \).

(f) Let \(p \) be odd. Use the strong form of Hensel’s lemma to prove that \(\mu_{p,p} \) is trivial. Conclude that there are exactly \(p - 1 \) roots of unity in \(\mathbb{Q}_p \) (be sure to address \(\mu_{p^r,p} \)).

(g) Prove that \(\mu_{4,2} = \mu_{2,2} = \{ \pm 1 \} \). Conclude that \(\pm 1 \) are the only roots of unity in \(\mathbb{Q}_2 \).

Problem 4. Survey

Complete the following survey by rating each problem on a scale of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 = “mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”). Also estimate the amount of time you spent on each problem.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Interest</th>
<th>Difficulty</th>
<th>Time Spent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please rate each of the following lectures that you attended, according to the quality of the material (1 = “useless”, 10 = “fascinating”), the quality of the presentation (1 = “epic fail”, 10 = “perfection”), the pace (1 = “way too slow”, 10 = “way too fast”), and the novelty of the material (1 = “old hat”, 10 = “all new”).

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture Topic</th>
<th>Material</th>
<th>Presentation</th>
<th>Pace</th>
<th>Novelty</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/1</td>
<td>Hensel’s lemma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/3</td>
<td>Quadratic forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feel free to record any additional comments you have on the problem sets or lectures; in particular, how you think they might be improved.

1 Anytime \(\mathbb{Z}/p\mathbb{Z} \) (or any ring for that matter) appears in a context where a group is required, you can assume it is the additive group that is being referred to (one uses \((\mathbb{Z}/p\mathbb{Z})^\times \) for the multiplicative group).