In this lecture we lay the groundwork needed to prove the Hasse-Minkowski theorem for \(\mathbb{Q} \), which states that a quadratic form over \(\mathbb{Q} \) represents 0 if and only if it represents 0 over every completion of \(\mathbb{Q} \) (as proved by Minkowski). The statement still holds if \(\mathbb{Q} \) is replaced by any number field (as proved by Hasse), but we will restrict our attention to \(\mathbb{Q} \).

Unless otherwise indicated, we use \(p \) throughout to denote any prime of \(\mathbb{Q} \), including the archimedean prime \(p = \infty \). We begin by defining the Hilbert symbol for \(p \).

10.1 The Hilbert symbol

Definition 10.1. For \(a, b \in \mathbb{Q}_p^\times \) the Hilbert symbol \((a, b)_p \) is defined by

\[
(a, b)_p = \begin{cases}
1 & \text{if } ax^2 + by^2 = 1 \text{ has a solution in } \mathbb{Q}_p, \\
-1 & \text{otherwise.}
\end{cases}
\]

It is clear from the definition that the Hilbert symbol is symmetric, and that it only depends on the images of \(a \) and \(b \) in \(\mathbb{Q}_p^\times / \mathbb{Q}_p^{\times 2} \) (their square classes). We note that

\[
\mathbb{Q}_p^\times / \mathbb{Q}_p^{\times 2} \simeq \begin{cases}
\mathbb{Z}/2\mathbb{Z} & \text{if } p = \infty, \\
(\mathbb{Z}/2\mathbb{Z})^2 & \text{if } p \text{ is odd,} \\
(\mathbb{Z}/2\mathbb{Z})^3 & \text{if } p = 2.
\end{cases}
\]

The case \(p = \infty \) is clear, since \(\mathbb{R}^\times = \mathbb{Q}_\infty^\times \) has just two square classes (positive and negative numbers), and the cases with \(p < \infty \) were proved in Problem Set 4. Thus the Hilbert symbol can be viewed as a map \((\mathbb{Q}_p^\times / \mathbb{Q}_p^{\times 2}) \times (\mathbb{Q}_p^\times / \mathbb{Q}_p^{\times 2}) \to \{\pm 1\} \) of finite sets.

We say that a solution \((x_0, \ldots, x_n) \) to a homogeneous polynomial equation over \(\mathbb{Q}_p \) is **primitive** if all of its elements lie in \(\mathbb{Z}_p \) and at least one lies in \(\mathbb{Z}_p^\times \). The following lemma gives several equivalent definitions of the Hilbert symbol.

Lemma 10.2. For any \(a, b \in \mathbb{Q}_p^\times \), the following are equivalent:

(i) \((a, b)_p = 1 \).

(ii) The quadratic form \(z^2 - ax^2 - by^2 \) represents 0.

(iii) The equation \(ax^2 + by^2 = z^2 \) has a primitive solution.

(iv) \(a \in \mathbb{Q}_p \) is the norm of an element in \(\mathbb{Q}_p(\sqrt{b}) \).

Proof. (i)\(\Rightarrow \) (ii) is immediate (let \(z = 1 \)). The reverse implication is clear if \(z^2 - ax^2 - by^2 = 0 \) represents 0 with \(z \) nonzero (divide by \(z^2 \)), and otherwise the non-degenerate quadratic form \(ax^2 + by^2 \) represents 0, hence it represents every element of \(\mathbb{Q}_p \) including 1, so (ii)\(\Rightarrow \) (i).

To show (ii)\(\Rightarrow \) (iii), multiply through by \(p^r \), for a suitable integer \(r \), and rearrange terms. The reverse implication (iii)\(\Rightarrow \) (ii) is immediate.

If \(b \) is square then \(\mathbb{Q}_p(\sqrt{b}) = \mathbb{Q}_p \) and \(N(a) = a \) so (iv) holds, and the form \(z^2 - by^2 \) represents 0, hence every element of \(\mathbb{Q}_p \) including \(ax_0^2 \) for any \(x_0 \), so (ii) holds. If \(b \) is not square then \(N(z + y\sqrt{b}) = z^2 - by^2 \). If \(a \) is a norm in \(\mathbb{Q}(\sqrt{b}) \) then \(z^2 - ax^2 - by^2 \) represents 0 (set \(x = 1 \)), and if \(z^2 - ax^2 - by^2 \) represents 0 then dividing by \(x^2 \) and adding \(a \) to both sides shows that \(a \) is a norm. So (ii)\(\Leftrightarrow \) (iv). \(\square \)
Corollary 10.3. For all \(a, b, c \in \mathbb{Q}_p^\times \), the following hold:

(i) \((1, c)_p = 1 \).
(ii) \((-c, c)_p = 1 \).
(iii) \((a, c)_p = 1 \implies (a, c)_p(b, c)_p = (ab, c)_p \).
(iv) \((c, c)_p = (-1, c)_p \).

Proof. Let \(N \) denote the norm map from \(\mathbb{Q}_p(\sqrt{c}) \) to \(\mathbb{Q}_p \). For (i) we have \(N(1) = 1 \). For (ii), \(-c = N(-c)\) for \(c \in \mathbb{Q}_p^\times \), so is \(-1 \). For (iii), If \(a \) and \(b \) are both norms in \(\mathbb{Q}(\sqrt{c}) \), then so is \(ab \), by the multiplicativity of the norm map; conversely, if \(a \) and \(ab \) are both norms, so is \(1/a \), as is \((1/a)ab = b \). Thus if \((a, c)_p = 1 \), then \((b, c)_p = 1 \) if and only if \((ab, c)_p = 1 \), which implies \((a, c)_p(b, c)_p = (ab, c)_p \). For (iv), \((-c, c)_p = 1 \) by (ii), so by (iii) we have \((c, c)_p = (-c, c)_p(c, c)_p = (-c^2, c)_p = (-1, c)_p \). \(\Box \)

Theorem 10.4. \((a, b)_\infty = -1 \) if and only if \(a, b < 0 \)

Proof. We can assume \(a, b \in \{\pm 1\} \), since \(\{\pm 1\} \) is a complete set of representatives for \(\mathbb{R}^\times / \mathbb{R}^\times \). If either \(a \) or \(b \) is 1 then \((a, b)_\infty = 1 \), by Corollary 10.3.(i), and \((-1, -1)_\infty = -1 \), since \(-1 \) is not a norm in \(\mathbb{C} = \mathbb{Q}_\infty(\sqrt{-1}) \). \(\Box \)

Lemma 10.5. If \(p \) is odd, then \((u, v)_p = 1 \) for all \(u, v \in \mathbb{Z}_p^\times \).

Proof. Recall from Lecture 3 (or the Chevalley-Warning theorem on problem set 2) that every plane projective conic over \(\mathbb{F}_p \) has a rational point, so we can find a non-trivial solution to \(z^2 - ux^2 - vy^2 = 0 \) modulo \(p \). If we then fix two of \(x, y, z \) so that the third is nonzero, Hensel's lemma gives a solution over \(\mathbb{Z}_p \). \(\Box \)

Remark 10.6. Lemma 10.5 does not hold for \(p = 2 \); for example, \((3, 3)_2 = -1 \).

Theorem 10.7. Let \(p \) be an odd prime, and write \(a, b \in \mathbb{Q}_p^\times \) as \(a = p^\alpha u \) and \(b = p^\beta v \), with \(\alpha, \beta \in \mathbb{Z} \) and \(u, v \in \mathbb{Z}_p^\times \). Then

\[
(a, b)_p = (-1)^{\alpha \beta \frac{p-1}{2}} \left(\frac{u}{p} \right)^\beta \left(\frac{v}{p} \right)^\alpha,
\]

where \(\left(\frac{z}{p} \right) \) denotes the Legendre symbol \(\left(\frac{z \mod p}{p} \right) \).

Proof. Since \((a, b)_p \) depends only on the square classes of \(a \) and \(b \), we assume \(\alpha, \beta \in \{0, 1\} \).

Case \(\alpha = 0, \beta = 0 \): We have \((u, v)_p = 1 \), by Lemma 10.5, which agrees with the formula.

Case \(\alpha = 1, \beta = 0 \): We need to show that \((pu, v)_p = \left(\frac{u}{p} \right) \).

Case \(\alpha = 1, \beta = 1 \): We must show \((pu, pv)_p = (-1)^{\frac{p-1}{2}} \left(\frac{u}{p} \right) \left(\frac{v}{p} \right) \).

Applying Corollary 10.3 we have

\[
(pu, pv)_p = (pu, pv)_p(-pv, pv)_p = (-p^2uv, pv)_p = (-uv, pv)_p = (pv, -uv)_p.
\]

Applying the formula in the case \(\alpha = 1, \beta = 0 \) already proved, we have

\[
(pv, -uv)_p = \left(\frac{-uv}{p} \right) = \left(\frac{-1}{p} \right) \left(\frac{u}{p} \right) \left(\frac{v}{p} \right) = (-1)^{\frac{p-1}{2}} \left(\frac{u}{p} \right) \left(\frac{v}{p} \right) \cdot \Box \]
Lemma 10.8. Let \(u, v \in \mathbb{Z}_2^\times \). The equations \(z^2 - ux^2 - vy^2 = 0 \) and \(z^2 - 2ux^2 - vy^2 = 0 \) have primitive solutions over \(\mathbb{Z}_2 \) if and only if they have primitive solutions modulo 8.

Proof. Without loss of generality we can assume that \(u \) and \(v \) are odd integers, since every square class in \(\mathbb{Z}_2^\times / \mathbb{Z}_2^{	imes 2} \) is represented by an odd integer (in fact one can assume \(u, v \in \{ \pm 1, \pm 5 \} \)). The necessity of having a primitive solution modulo 8 is clear. To prove sufficiency we apply the strong form of Hensel’s lemma proved in Problem Set 4. In both cases, if we have a non-trivial solution \((x_0, y_0, z_0) \) modulo 8 we can fix two of \(x_0, y_0, z_0 \) to obtain a quadratic polynomial \(f(w) \) over \(\mathbb{Z}_2 \) and \(w_0 \in \mathbb{Z}_2^\times \) that satisfies \(v_2(f(w_0)) = 3 > 2 = 2v_2(f'(w_0)) \). In the case of the second equation, note that a primitive solution \((x_0, y_0, z_0) \) modulo 8 must have \(y_0 \) or \(z_0 \) odd; if not, then \(z_0^2 \) and \(v_0^2 \), and therefore \(2ux_0^2 \), are divisible by 4, but this means \(x_0 \) is also divisible by 2, which contradicts the primitivity of \((x_0, y_0, z_0) \). Lifting \(w_0 \) to a root of \(f(w) \) over \(\mathbb{Z}_2 \) yields a solution to the original equation. \(\square \)

Theorem 10.9. Write \(a, b \in \mathbb{Q}_2^\times \) as \(a = 2^αu \) and \(b = 2^βv \) with \(α, β \in \mathbb{Z} \) and \(u, v \in \mathbb{Z}_2^\times \). Then
\[
(a, b)_2 = (-1)^{(uε(v)+αω(v)+βω(u))},
\]
where \(ε(u) \) and \(ω(u) \) denote the images in \(\mathbb{Z}/2\mathbb{Z} \) of \((u - 1)/2 \) and \((u^2 - 1)/8 \), respectively.

Proof. Since \((a, b)_2 \) only depends on the square classes of \(a \) and \(b \), it suffices to verify the formula for \((a, b)_2 \) with \(S = \{ ±1, ±3, ±2, ±6 \} \). By Lemma 10.8, to compute \((a, b)_2 \) with \(a, b \) in \(\mathbb{Z}_2^\times \), it suffices to check for primitive solutions to \(z^2 - ax^2 - by^2 = 0 \) modulo 8, which reduces the problem to a finite verification which performed by 18.782 Lecture 10 Sage Worksheet.

We now note the following corollary to Theorems 10.4, 10.7, and 10.9.

Corollary 10.10. The Hilbert symbol \((a, b)_p \) is a nondegenerate bilinear map. This means that for all \(a, b, c \in \mathbb{Q}_p^\times \) we have
\[
(a, c)_p(b, c)_p = (ab, c) \quad \text{and} \quad (a, b)_p(a, c)_p = (a, bc)_p,
\]
and that for every non-square \(c \) we have \((b, c)_p = -1 \) for some \(b \).

Proof. Both statements are clear for \(p = \infty \) (there are only 2 square classes and 4 combinations to check). For \(p \) odd, let \(c = p^γw \) and fix \(ε = (-1)^{\frac{p-1}{2}} \). Then for \(a = p^αu \) and \(b = p^βv \), we have
\[
(a, c)_p(b, c)_p = ε^{αγ}(u \overline{w})^α(w \overline{p})^γ \overline{v}^β \overline{w}^β = ε^{α+β} \overline{u}^γ(w \overline{p})^{α+β} = (ab, c)_p.
\]

To verify non-degeneracy, we note that if \(c \) is not square then either \(γ = 1 \) or \((w \overline{p}) = -1 \). If \(γ = 1 \) we can choose \(b = v \) with \((\overline{w} \overline{p}) = -1 \), so that \((b, c)_p = (w \overline{p}) = -1 \). If \(γ = 0 \), then \(ε = 1 \) and \((w \overline{p}) = -1 \), so with \(b = p \) we have \((b, c)_p = (w \overline{p}) = -1 \).
For $p = 2$, we have
\[(a,c)_2(b,c)_2 = (-1)^{\epsilon(u)\epsilon(w) + \alpha\omega(w) + \gamma\omega(u)}(-1)^{\epsilon(v)\epsilon(w) + \beta\omega(w) + \gamma\omega(v)}
= (-1)^{\epsilon(u) + \epsilon(v) + \alpha\omega(w) + \beta\omega(w) + \gamma\omega(u) + \gamma\omega(v)}
= (-1)^{\epsilon(u)v\omega(w) + (\alpha + \beta)\omega(w) + \gamma\omega(u)v}
= (ab,c)_2,
\]
where we have used the fact that ϵ and ω are group homomorphisms from \mathbb{Z}_2^\times to $\mathbb{Z}/2\mathbb{Z}$. To see this, note that the image of $\epsilon^{-1}(0)$ in $(\mathbb{Z}/4\mathbb{Z})^\times$ is $\{1\}$, a subgroup of index 2, and the image of $\omega^{-1}(0)$ in $(\mathbb{Z}/8\mathbb{Z})^\times$ is $\{\pm 1\}$, which is again a subgroup of index 2.

We now verify non-degeneracy for $p = 2$. If c is not square then either $\gamma = 1$, or one of $\epsilon(w)$ and $\omega(w)$ is nonzero. If $\gamma = 1$, then $(5,c)_2 = -1$. If $\gamma = 0$ and $\omega(w) = 1$, then $(2,c)_2 = -1$. If $\gamma = 0$ and $\omega(w) = 0$, then we must have $\epsilon(w) = 1$, so $(-1,c)_2 = -1$. \blacksquare

We now prove Hilbert’s reciprocity law, which may be regarded as a generalization of quadratic reciprocity.

Theorem 10.11. Let $a, b \in \mathbb{Q}^\times$. Then $(a,b)_p = 1$ for all but finitely many primes p and
\[
\prod_p (a,b)_p = 1.
\]

Proof. We can assume without loss of generality that $a, b \in \mathbb{Z}$, since multiplying each of a and b by the square of its denominator will not change $(a,b)_p$ for any p. The theorem holds if either a or b is 1, and by the bilinearity of the Hilbert symbol, we can assume that
\[a,b \in \{-1\} \cup \{q \in \mathbb{Z}_{>0} : q \text{ is prime}\}.
\]
The first statement of the theorem is clear, since $a,b \in \mathbb{Z}_p^\times$ for $p < \infty$ not equal to a or b, and $(u,v)_p = 1$ for all $u,v \in \mathbb{Z}_p^\times$ when p is odd, by Lemma 10.5. To verify the product formula, we consider 5 cases.

Case 1: $a = b = -1$. Then $(-1,-1)_\infty = (-1,-1)_2 = -1$ and $(-1,-1)_p = 1$ for p odd.

Case 2: $a = -1$ and b is prime. If $b = 2$ then $(1,1)$ is a solution to $-x^2 + 2y^2 = 1$ over \mathbb{Q}_p for all p, thus $\prod_p (-1,2)_p = 1$. If b is odd, then $(-1,b)_p = 1$ for $p \notin \{2,b\}$, while $(-1,b)_2 = (-1)^{\epsilon(b)}$ and $(-1,b)_b = (\frac{-1}{b})$, both of which are equal to $(-1)^{(b-1)/2}$.

Case 3: a and b are the same prime. Then by Corollary 10.3, $(b,b)_p = (-1,b)_p$ for all primes p, and we are in case 2.

Case 4: $a = 2$ and b is an odd prime. Then $(2,b)_p = 1$ for all $p \notin \{2,b\}$, while $(2,b)_2 = (-1)^{\omega(b)}$ and $(2,b)_b = (\frac{2}{b})$, both of which are equal to $(-1)^{(b^2-1)/8}$.

Case 5: a and b are distinct odd primes. Then $(a,b)_p = 1$ for all $p \notin \{2,a,b\}$, while
\[
(a,b)_p = \begin{cases}
(-1)^{\epsilon(a)\epsilon(b)} & \text{if } p = 2, \\
\left(\frac{a}{b}\right) & \text{if } p = b, \\
\left(\frac{b}{a}\right) & \text{if } p = a.
\end{cases}
\]

Since $\epsilon(x) = (x - 1)/2 \mod 2$, we have
\[
\prod_p (a,b)_p = (-1)^{\frac{a+1}{2} \frac{b+1}{2}} \left(\frac{a}{b}\right) \left(\frac{b}{a}\right) = 1,
\]
by quadratic reciprocity. \blacksquare