3 Finite fields and integer arithmetic

In order to perform explicit computations with elliptic curves over finite fields, we first need to understand arithmetic in finite fields. In many of the applications we will consider, the finite fields involved will be quite large, so it is important to understand the computational complexity of finite field operations. This is a huge topic, one to which an entire course could be devoted, but we will spend just one week on finite field arithmetic (this lecture and the next), with the goal of understanding the most commonly used algorithms and analyzing their asymptotic complexity. This will force us to omit many details.

The first step is to fix an explicit representation of finite field elements. This might seem like a technical detail, but it is actually quite crucial; questions of computational complexity are meaningless otherwise.

Example 3.1. As we will prove shortly, the multiplicative group of a finite field is cyclic. So one way to represent the nonzero elements of a finite field explicit powers of a fixed generator (so it is enough to specify just the exponent). With this representation multiplication and division are easy, solving the discrete logarithm problem is trivial, but addition is hard. We will instead choose a representation that makes addition (and subtraction) very easy, multiplication slightly harder but still easy, division slightly harder than multiplication but still easy (all these operations take quasi-linear time). But solving the discrete logarithm problem will be hard (no polynomial-time algorithm is known).

For they sake of brevity, we will focus primarily on finite fields of large characteristic, and prime fields in particular, although the algorithms we describe will work in any finite field of odd characteristic. Fields of characteristic 2 are quite important in practical applications (coding theory in particular), and there are many specialized algorithms that are optimized for such fields, but we will not address them here.¹

3.1 Finite fields

We begin with a quick review of some basic facts about finite fields, all of which are straightforward but necessary for us to establish a choice of representation; we will also need them when we discuss algorithms for factoring polynomials over finite fields in the next lecture.²

Definition 3.2. For each prime \(p \) we define \(\mathbb{F}_p \) to be the quotient ring \(\mathbb{Z}/p\mathbb{Z} \).

Theorem 3.3. The ring \(\mathbb{F}_p \) is a field, and every field of characteristic \(p \) contains a canonical subfield isomorphic to \(\mathbb{F}_p \). In particular, all fields of cardinality \(p \) are isomorphic.

Proof. For any \(a \neq 0 \mod p \) we have \(\gcd(a, p) = 1 \), and the extended Euclidean algorithm allows us to compute \(u, v \in \mathbb{Z} \) such that \(ua + vp = 1 \). We have \(ua \equiv 1 \mod p \), and this shows that every nonzero element of \(\mathbb{Z}/p\mathbb{Z} \) has a multiplicative inverse, which makes the commutative ring \(\mathbb{Z}/p\mathbb{Z} \) a field. In any field of characteristic \(p \) the set \(\{0, 1, 1 + 1, \ldots\} \) is a subring isomorphic to \(\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p \).

¹With the recent breakthrough in computing discrete logarithms in finite fields of small characteristic [1] in quasi-polynomial time, there is less enthusiasm for using these fields in elliptic curve cryptography, although in principle this should only impact curves with small embedding degree (so-called "pairing-friendly" curves).

²For students already familiar with this material, I recommend the following exercise: write down each of the theorems in this section on a separate piece of paper and prove them yourself (to make things more interesting, see if you can do it without using any Galois theory).
The most common way to represent \mathbb{F}_p for computational purposes is to pick a set of unique coset representatives for $\mathbb{Z}/p\mathbb{Z}$, such as the integers in the interval $[0, p-1]$.

Definition 3.4. For each prime power $q = p^n$ we define $\mathbb{F}_q = \mathbb{F}_{p^n}$ to be the field extension of \mathbb{F}_p generated by adjoining all roots of $x^q - x$ to \mathbb{F}_p (the splitting field of $x^q - x$ over \mathbb{F}_p).

Theorem 3.5. Let $q = p^n$ be a prime power. The field \mathbb{F}_q has cardinality q and every field of cardinality q is isomorphic to \mathbb{F}_q.

Proof. The map $x \mapsto x^q = x^{p^n}$ is an automorphism of \mathbb{F}_q, since in characteristic p we have

$$(a + b)^{p^n} = a^{p^n} + b^{p^n} \quad \text{and} \quad (ab)^{p^n} = a^{p^n}b^{p^n},$$

where the first identity follows from the binomial theorem (the binomial coefficients $\binom{p^n}{k}$ all vanish except $\binom{p^n}{1} = \binom{p^n}{p^n} = 1$). The subfield of \mathbb{F}_q fixed by this automorphism is precisely the set S of roots of $x^q - x$, which includes \mathbb{F}_p, since

$$(1 + \cdots + 1)^q = 1^q + \cdots + 1^q = 1 + \cdots + 1.$$

Thus $\mathbb{F}_q = S$, as sets. The polynomial $x^q - x$ has no roots in common with its derivative $(x^q - x)' = qx^{q-1} - 1 = -1$, so it has q distinct roots. Therefore $\#\mathbb{F}_q = \#S = q$.

Now let k be a field of cardinality $q = p^n$. Then k must have characteristic p, since the set $\{1, 1+1, \ldots\}$ is a subgroup of the additive group of k, so the characteristic divides $\#k = p^n$, and in a finite ring with no zero divisors the characteristic must be prime. By the previous theorem, k contains a subfield isomorphic to \mathbb{F}_p. The order of each $\alpha \in k^\times$ (the multiplicative group of k containing all nonzero elements) must divide $\#k^\times = q - 1$; thus $\alpha^{q-1} = 1$ for all $\alpha \in k^\times$, and every $\alpha \in k$, including $\alpha = 0$, is thus a root of $x^q - x$. We have $\#k = q$, so k contains every root of $x^q - x$ and is therefore isomorphic to \mathbb{F}_q, the splitting field of $x^q - x$ over \mathbb{F}_p.

Remark 3.6. Now that we know all finite fields of cardinality q are isomorphic, we will feel free to refer to any and all of them as the finite field \mathbb{F}_q.

Theorem 3.7. The finite field \mathbb{F}_{p^n} is a subfield of \mathbb{F}_{p^m} if and only if m divides n.

Proof. If $\mathbb{F}_{p^n} \subseteq \mathbb{F}_{p^m}$ then \mathbb{F}_{p^n} is an \mathbb{F}_{p^m}-vector space of (integral) dimension n/m, so $m|n$. If $m|n$ then $p^n - p^m = (p^m - 1)(p^{n-2m} + p^{n-3m} + \cdots + p^m + 1)$ is divisible by $p^m - 1$ and

$$x^{p^n} - x = (x^{p^m} - x)(1 + x^{p^m - 1} + x^{2(p^m - 1)} + \cdots + x^{p^m - p^m})$$

is divisible by $x^{p^m} - x$. Thus every root of $x^{p^m} - x$ is also a root of $x^{p^n} - x$, so $\mathbb{F}_{p^n} \subseteq \mathbb{F}_{p^m}$.

Theorem 3.8. If $f \in \mathbb{F}_p[x]$ is an irreducible polynomial of degree n then $\mathbb{F}_p[x]/(f) \simeq \mathbb{F}_{p^n}$.

Proof. The ring $k := \mathbb{F}_p[x]/(f)$ is an \mathbb{F}_p-vector space with basis $1, \ldots, x^{n-1}$ and therefore has cardinality p^n. The ring $\mathbb{F}_p[x]$ is a Euclidean domain.\(^3\) If $a \in \mathbb{F}_p[x]$ is not divisible by f then we must have $\gcd(f, a) = 1$ (since f is irreducible), and we can then use the extended Euclidean algorithm to compute $u, v \in \mathbb{F}_p[x]$ satisfying $ua + vf = 1$, and u is then a multiplicative inverse of a modulo f (exactly as in the proof of Theorem 3.3).

It follows that every nonzero element of the commutative ring k has a multiplicative inverse, thus k is a field of cardinality p^n and therefore isomorphic to \mathbb{F}_{p^n}.

\(^3\)Recall that this means it has a division algorithm that produces a remainder that is always “smaller” than the divisor; for a polynomial ring “smaller” means lower degree.
Theorem 3.8 allows us to explicitly represent \mathbb{F}_{p^n} as $\mathbb{F}_p[x]/(f)$ using any irreducible polynomial $f \in \mathbb{F}_p[x]$ of degree n, and it does not matter which f we pick; by Theorem 3.5 we always get the same field (up to isomorphism). We also note the following corollary.

Corollary 3.9. Every irreducible polynomial $f \in \mathbb{F}_p[x]$ of degree n splits completely in \mathbb{F}_{p^n}.

Proof. We have $\mathbb{F}_p[x]/(f) \simeq \mathbb{F}_{p^n}$, so every root of f must be a root of $x^{p^n} - x$, hence an element of \mathbb{F}_{p^n}.

Remark 3.10. This corollary implies that $x^{p^n} - x$ is the product over the divisors d of n of all monic irreducible polynomials of degree d in $\mathbb{F}_p[x]$. This can be used to derive explicit formulas for the number of irreducible polynomials of degree d in $\mathbb{F}_p[x]$ using Möbius inversion.

Theorem 3.11. Every finite subgroup of the multiplicative group of a field is cyclic.

Proof. Let k be a field, let G be a subgroup of k^\times of order n, and let m be the exponent of G (the least common multiple of the orders of its elements), which necessarily divides n. Every element of G is a root of $x^m - 1$, which has at most m roots, so $m = n$. For each prime power q dividing m, there must be an element of G of order q (otherwise m would be smaller). Since G is abelian, any product of elements of relatively prime orders a and b has order ab. It follows that G contains an element of order $m = n$ and is therefore cyclic.

Corollary 3.12. The multiplicative group of a finite field is cyclic.

If α is a generator for the multiplicative group \mathbb{F}_q^\times, then it certainly generates \mathbb{F}_q as an extension of \mathbb{F}_p, that is, $\mathbb{F}_q = \mathbb{F}_p(\alpha)$, and we have $\mathbb{F}_q \simeq \mathbb{F}_p[x]/(f)$, where $f \in \mathbb{F}_p[x]$ is the minimal polynomial of α, but the converse need not hold. This motivates the following definition.

Definition 3.13. A monic irreducible polynomial $f \in \mathbb{F}_p[x]$ whose roots generate the multiplicative group of the finite field $\mathbb{F}_p[x]/(f)$ is called a primitive polynomial.

Theorem 3.14. For every prime p and positive integer n there exist primitive polynomials of degree n in $\mathbb{F}_p[x]$. Indeed, the number of such polynomials is $\phi(p^n - 1)/n$.

Here $\phi(m)$ is the Euler function that counts the generators of a cyclic group of order m, equivalently, the number of integers in $[1, m - 1]$ that are relatively prime to m.

Proof. Let α be a generator for \mathbb{F}_p^\times with minimal polynomial $f_\alpha \in \mathbb{F}_p[x]$; then f_α is primitive. There are $\phi(p^n - 1)$ possible choices for α. Conversely, if $f \in \mathbb{F}_p[x]$ is a primitive polynomial of degree n then each of its n roots is a generator for \mathbb{F}_q^\times. We thus have a surjective n-to-1 map $\alpha \rightarrow f_\alpha$ from the set of generators of \mathbb{F}_p^\times to the set of primitive polynomials over \mathbb{F}_p of degree n; the theorem follows.

The preceding theorem implies that there are plenty of irreducible (and even primitive) polynomials $f \in \mathbb{F}_p[x]$ that we can use to represent $\mathbb{F}_q = \mathbb{F}_p[x]/(f)$ when q is not prime. The choice of the polynomial f has some impact on the cost of reducing a polynomials in $\mathbb{F}_p[x]$ modulo f; ideally we would like f to have as few nonzero coefficients as possible. We can choose f to be a binomial only when its degree divides $p - 1$, but we can usually (although not always) choose f to be a trinomial; see [6]. Finite fields in cryptographic standards are often specified using an $f \in \mathbb{F}_p[x]$ that makes reduction modulo f particularly efficient.
Having fixed a representation for \(F_q \), every finite field operation can ultimately be reduced to integer arithmetic: elements of \(F_p \) are represented as integers in \([0, p-1]\), and elements of \(F_q = F_p[x]/(f) \) are represented as polynomials of degree less than \(\deg f \) whose coefficients are integers in \([0, p-1]\). We will see exactly how to efficiently reduce arithmetic in \(F_q \) to integer arithmetic in the next lecture. In the rest of this lecture we consider the complexity of integer arithmetic.

3.2 Integer addition

Every nonnegative integer \(a \) has a unique binary representation \(a = \sum_{i=0}^{n-1} a_i 2^i \) with \(a_i \in \{0, 1\} \) and \(a_{n-1} \neq 0 \). The binary digits \(a_i \) are called bits, and we say that \(a \) is an \(n \)-bit integer; we can represent negative integers by including an additional sign bit.

To add two integers in their binary representations we apply the "schoolbook" method, adding bits and carrying as needed. For example, we can compute \(43 + 37 = 80 \) in binary as

\[
\begin{array}{c c c}
101111 \\
101011 \\
+100101 \\
\hline
1010000 \\
\end{array}
\]

The carry bits are shown in red. To see how this might implemented in a computer, consider a 1-bit adder that takes two bits \(a_i \) and \(b_i \) to be added, along with a carry bit \(c_i \).

\[
\begin{array}{c}
\text{1-bit adder} \\
\hline
a_i \quad b_i \quad c_i \\
\hline
s_i \\
\text{c}_{i+1} \\
\end{array}
\]

\[
c_{i+1} = (a_i \land b_i) \lor (c_i \land a_i) \lor (c_i \land b_i)
\]

\[
s_i = a_i \otimes b_i \otimes c_i
\]

The symbols \(\land, \lor, \) and \(\otimes \) denote the boolean functions AND, OR, and XOR (exclusive-or) respectively, which we may regard as primitive components of a boolean circuit. By chaining \(n+1 \) of these 1-bit adders together, we can add two \(n \)-bit numbers using \(7n + 7 = O(n) \) boolean operations on individual bits.

Remark 3.15. Chaining adders is known as ripple addition and is no longer commonly used, since it forces a sequential computation. In practice more sophisticated methods such as carry-lookahead are used to facilitate parallelism. This allows most modern microprocessors to add two 64 (or even 128) bit integers in a single clock cycle.

We could instead represent the same integer \(a \) as a sequence of words rather than bits. For example, write \(a = \sum_{i=0}^{k-1} a_i 2^{64i} \), where \(k = \left\lceil \frac{n}{64} \right\rceil \). We may then add two integers using a sequence of \(O(k) \), equivalently, \(O(n) \), operations on 64-bit words. Each word operation is ultimately implemented as a boolean circuit that involves operations on individual bits, but since the word-size is fixed, the number of bit operations required to implement any particular word operation is a constant. So the number of bit operations is again \(O(n) \), and if we ignore constant factors it does not matter whether we count bit or word operations.

Subtraction is analogous to addition (now we need to borrow rather than carry), and has the same complexity, so we will not distinguish these operations when analyzing the
complexity of algorithms. With addition and subtraction of integers, we have everything we need to perform addition and subtraction in a finite field. To add two elements of $\mathbb{F}_p \simeq \mathbb{Z}/p\mathbb{Z}$ that are uniquely represented as integers in the interval $[0, p-1]$ we simply add the integers and check whether the result is greater than or equal to p; if so we subtract p to obtain a value in $[0, p-1]$. Similarly, after subtracting two integers we add p if the result is negative. The total work involved is still $O(n)$ bit operations, where $n = \lg p$ is the number of bits needed to represent a finite field element.

To add or subtract two elements of $\mathbb{F}_q \simeq (\mathbb{Z}/p\mathbb{Z})[x]/(f)$ we simply add or subtract the corresponding coefficients of the polynomials, for a total cost of $O(d \lg p)$ bit operations, where $d = \deg f$, which is again $O(n)$ bit operations, if we put $n = \lg q = d \lg p$.

Theorem 3.16. The time to add or subtract two elements of \mathbb{F}_q in our standard representation is $O(n)$, where $n = \lg q$ is the size of a finite field element.

3.3 A quick refresher on asymptotic notation

Let f and g be two real-valued functions whose domains include the positive integers. The *big-O notation* “$f(n) = O(g(n))$” is shorthand for the statement:

There exist constants c and N such that for all $n \geq N$ we have $|f(n)| \leq c |g(n)|$.

This is equivalent to

$$
\limsup_{n \to \infty} \frac{|f(n)|}{|g(n)|} < \infty.
$$

Warning 3.17. This notation is a horrible abuse of the symbol “$=$”. When speaking in words we would say “$f(n)$ is $O(g(n))$,“ where the word “is" does not imply equality (e.g., “Aristotle is a man”), and it is generally better to write this way. Symbolically, it would make more sense to write $f(n) \in O(g(n))$, regarding $O(g(n))$ as a set of functions. Some do, but the notation $f(n) = O(g(n))$ is far more common and we will occasionally use it in this course, with one caveat: we will never write a big-O expression on the left of an “equality". It may be true that $f(n) = O(n \log n)$ implies $f(n) = O(n^2)$, but we avoid writing $O(n \log n) = O(n^2)$ because $O(n^2) \neq O(n \log n)$.

We also have *big-Ω notation* “$f(n) = \Omega(g(n))$", which means $g(n) = O(f(n))$. Then there is also *little-o notation* “$f(n) = o(g(n))$,” which is shorthand for

$$
\lim_{n \to \infty} \frac{|f(n)|}{|g(n)|} = 0.
$$

An alternative notation that is sometimes used is $f \ll g$, but depending on the author this may mean $f(n) = o(g(n))$ or $f(n) = O(g(n))$ (computer scientists tend to mean the former, while number theorists usually mean the latter, so we will avoid this notation). There is also a little-omega notation, but the symbol ω already has so many uses in number theory that we will not burden it further (we can always use little-o notation instead). The notation $f(n) = \Theta(g(n))$ means that both $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$ hold.

4The Ω-notation originally defined by Hardy and Littlewood had a slightly weaker definition, but modern usage generally follows our convention, which is due to Knuth.
Warning 3.18. Don’t confuse a big-O statement with a big-Θ statement; the former implies only an upper bound. If Alice has an algorithm that is $O(2^n)$ this does not mean that Alice’s algorithm requires exponential time, and it does not mean that Bob’s $O(n^2)$ algorithm is better; Alice’s algorithm could be $O(n)$ for all we know. But if Alice’s algorithm is $\Omega(2^n)$ then we would definitely prefer to use Bob’s algorithm for all sufficiently large n.

Big-O notation can also be used for multi-variable functions: $f(m, n) = O(g(m, n))$ is shorthand for the statement:

There exist constants c and N such that for all $m, n \geq N$ we have $|f(m, n)| \leq c|g(m, n)|$.

This statement is weaker than it appears. For example, it says nothing about the relationship between $f(m, n)$ and $g(m, n)$ if we fix one of the variables. However, in virtually all of the examples we will see it will actually be true that if we regard $f(m, n) = f_m(n)$ and $g(m, n) = g_m(n)$ as functions of n with a fixed parameter m, we have $f_m(n) = O(g_m(n))$ (and similarly $f_n(m) = O(g_n(m))$).

So far we have spoken only of time complexity, but space complexity plays a crucial role in many algorithms that we will see in later lectures. Space complexity measures the amount of memory an algorithm requires; this can never be greater than its time complexity (it takes time to use space), but it may be smaller. When we speak of “the complexity” of an algorithm, we should really consider both time and space. An upper bound on the time complexity is also an upper bound on the space complexity but it is often possible (and desirable) to obtain a better bound for the space complexity.

For more information on asymptotic notation and algorithmic complexity, see [2].

Warning 3.19. In this class, unless explicitly stated otherwise, our asymptotic bounds always count bit operations (as opposed to finite field operations, or integer operations). When comparing complexity bounds found in the literature, one must be sure to understand exactly what is being counted. For example, a complexity bound that counts operations in finite fields may need to be converted to a bit complexity to get an accurate comparison, and this conversion is going to depend on exactly which finite field operations are being used and how the finite fields are represented.

3.4 Integer multiplication

We now consider the problem of multiplying integers.

3.4.1 Schoolbook method

Let us compute $37 \times 43 = 1591$ with the “schoolbook” method, using a binary representation.

\[
\begin{align*}
101011 \\
\times 100101 \\
\hline
101011 \\
101011 \\
+101011 \\
\hline
1100011011
\end{align*}
\]

Multiplying individual bits is easy (just use an AND-gate), but we need to do n^2 bit multiplications, followed by n additions of n-bit numbers (suitably shifted). The complexity of this algorithm is thus $\Theta(n^2)$. This gives us an upper bound on the time $M(n)$ to multiply two n-bit integers, but we can do better.
3.4.2 Karatsuba’s algorithm

Rather than representing \(n \)-bit integers using \(n \) digits in base 2, we may instead represent them using 2 digits in base \(2^{n/2} \). We may then compute their product as follows

\[
\begin{align*}
a &= a_0 + 2^{n/2} a_1 \\
b &= b_0 + 2^{n/2} b_1 \\
ab &= a_0 b_0 + 2^{n/2} (a_1 b_0 + b_1 a_0) + 2^n a_1 b_1
\end{align*}
\]

Naively, this requires four multiplications of \((n/2)\)-bit integers and three additions of \(O(n)\)-bit integers (note that multiplying an intermediate result by a power of 2 can be achieved by simply writing the binary output “further to the left” and is effectively free). However, we can use the following identity to compute \(a_0 b_1 + b_0 a_1\) more efficiently

\[
a_0 b_1 + b_0 a_1 = (a_0 + a_1)(b_0 + b_1) - a_0 b_0 - a_1 b_1.
\]

By reusing the common subexpressions \(a_0 b_0\) and \(a_1 b_1\), we can multiply \(a\) and \(b\) using three multiplications and six additions (we count subtractions as additions). We can use the same idea to recursively compute the three products \(a_0 b_0\), \(a_1 b_1\), and \((a_0 + a_1)(b_0 + b_1)\); this is known as Karatsuba’s algorithm.

If we let \(T(n)\) denote the running time of this algorithm, we have

\[
T(n) = 3T(n/2) + O(n) = O(n^{\log_2 3})
\]

Thus \(M(n) = O(n^{\log_3 3}) \approx O(n^{1.59})\).

3.4.3 The Fast Fourier Transform (FFT)

The fast Fourier transform is widely regarded as one of the top ten algorithms of the twentieth century \cite{Korner, Kahan}, and has applications throughout applied mathematics. Here we focus on the discrete Fourier transform (DFT), and its application to multiplying integers and polynomials, following the presentation in \cite[§8]{Knuth}. It is actually more natural to address the problem of polynomial multiplication first.

Let \(R\) be a commutative ring containing a primitive \(n\)th root of unity \(\omega\), by which we mean that \(\omega^n = 1\) and \(\omega^i - \omega^j\) is not a zero divisor for \(0 \leq i < j < n\) (when \(R\) is a field this coincides with the usual definition). We shall identify the set of polynomials in \(R[x]\) of degree less than \(n\) with the set of all \(n\)-tuples with entries in \(R\). Thus we represent the polynomial \(f(x) = \sum_{i=0}^{n-1} f_i x^i\) by its coefficient vector \((f_0, \ldots, f_{n-1}) \in R^n\) and may speak of the polynomial \(f \in R[x]\) and the vector \(f \in R^n\) interchangeably.

The discrete Fourier transform \(\text{DFT}_\omega : R^n \to R^n\) is the \(R\)-linear map

\[
(f_0, \ldots, f_{n-1}) \xrightarrow{\text{DFT}_\omega} (f(\omega^0), \ldots, f(\omega^{n-1})�
\]

You should think of this map as a conversion between two types of polynomial representations: we take a polynomial of degree less than \(n\) represented by \(n\) coefficients (its coefficient-representation) and convert it to a representation that gives its values at \(n\) known points (its point-representation).

\footnote{We write \(\lg n\) for \(\log_2 n\).}
One can use Lagrange interpolation to recover the coefficient representation from the point representation, but our decision to use values $\omega^0, \ldots, \omega^{n-1}$ that are nth roots of unity allows us to do this more efficiently. If we define the Vandermonde matrix

$$V_\omega := \begin{pmatrix} 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2n-2} \\ 1 & \omega^3 & \omega^6 & \cdots & \omega^{3n-3} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & \omega^{n-1} & \omega^{2n-2} & \cdots & \omega^{(n-1)^2} \end{pmatrix},$$

then $\text{DFT}_\omega(f) = V_\omega f^\mathbb{T}$. Our assumption that none of the differences $\omega^i - \omega^j$ is a zero divisor in R guarantees that the matrix V_ω is invertible, and in fact its inverse is just $\frac{1}{n}V_\omega^{-1}$. It follows that

$$\text{DFT}_\omega^{-1} = \frac{1}{n} \text{DFT}_\omega.$$

Thus if we have an algorithm to compute DFT_ω we can use it to compute DFT_ω^{-1}: simply replace ω by ω^{-1} and multiply the result by $\frac{1}{n}$.

We now define the cyclic convolution $f * g$ of two polynomials $f, g \in R^n$:

$$f * g = fg \mod (x^n - 1).$$

Reducing the product on the right modulo $x^n - 1$ ensures that $f * g$ is a polynomial of degree less than n, thus we may regard the cyclic convolution as a map from R^n to R^n. If $h = f * g$, then $h_i = \sum f_j g_k$, where the sum is over $j + k \equiv i \mod n$. If f and g both have degree less than $n/2$, then $f * g = fg$; thus the cyclic convolution of f and g can be used to compute their product, provided that we make n big enough.

We also define the pointwise product $f \cdot g$ of two vectors in $f, g \in R^n$:

$$f \cdot g = (f_0 g_0, f_1 g_1, \ldots, f_{n-1} g_{n-1}).$$

We have now defined three operations on vectors in R^n: the binary operations of convolution and point-wise product, and the unary operation DFT_ω. The following theorem relates these three operations and is the key to the fast Fourier transform.

Theorem 3.20. $\text{DFT}_\omega(f * g) = \text{DFT}_\omega(f) \cdot \text{DFT}_\omega(g)$.

Proof. Since $f * g = fg \mod (x^n - 1)$, we have

$$f * g = fg + q \cdot (x^n - 1)$$

for some polynomial $q \in R[x]$. For every integer i from 0 to $n - 1$ we then have

$$(f * g)(\omega^i) = f(\omega^i)g(\omega^i) + q(\omega^i)(\omega^{in} - 1)$$

$$= f(\omega^i)g(\omega^i),$$

where we have used $(\omega^{in} - 1) = 0$, since ω is an nth root of unity. \hfill \square

The theorem implies that if f and g are polynomials of degree less then $n/2$ then

$$fg = f * g = \text{DFT}_\omega^{-1}(\text{DFT}_\omega(f) \cdot \text{DFT}_\omega(g)).$$

(1)
This identity allows us to multiply polynomials using the discrete Fourier transform. To put this into practice, we need an efficient way to compute DFT_ω, which is achieved by the following recursive algorithm.

Algorithm: Fast Fourier Transform (FFT)

Input: A positive integer $n = 2^k$, a vector $f \in R^n$, and the vector $(\omega^{0}, \ldots, \omega^{n-1}) \in R^n$.

Output: $DFT_\omega(f) \in R^n$.

1. If $n = 1$ then return (f_0) and terminate.
2. Write the polynomial $f(x)$ in the form $f(x) = g(x) + x^{\frac{n}{2}} h(x)$, where $g, h \in R^{\frac{n}{2}}$.
3. Compute the vectors $r = g + h$ and $s = (g - h) \cdot (\omega^{0}, \ldots, \omega^{\frac{n}{2}-1})$ in $R^{\frac{n}{2}}$.
4. Recursively compute $DFT_\omega(r)$ and $DFT_\omega(s)$ using $(\omega^{0}, \omega^{2}, \ldots, \omega^{n-2})$.
5. Return $(r(\omega^{0}), s(\omega^{0}), r(\omega^{2}), s(\omega^{2}), \ldots, r(\omega^{n-2}), s(\omega^{n-2}))$

Let $T(n)$ be the number of operations in R used by the FFT algorithm. Then $T(n)$ satisfies the recurrence $T(n) = 2T(\frac{n}{2}) + O(n)$, and it follows that $T(n) = O(n \log n)$.

Theorem 3.21. The FFT algorithm outputs $DFT_\omega(f)$.

Proof. We must verify that the kth entry of the output vector is $f(\omega^k)$, for $0 \leq k < n$. For the even values of $k = 2i$ we have:

$$f(\omega^{2i}) = g(\omega^{2i}) + (\omega^{2i})^{n/2}h(\omega^{2i})$$
$$= g(\omega^{2i}) + h(\omega^{2i})$$
$$= r(\omega^{2i}).$$

For the odd values of $k = 2i + 1$ we have:

$$f(\omega^{2i+1}) = \sum_{0 \leq j < n/2} f_{j}\omega^{(2i+1)j} + \sum_{0 \leq j < n/2} f_{n/2+j}\omega^{(2i+1)(n/2+j)}$$
$$= \sum_{0 \leq j < n/2} g_{j}\omega^{2ij} + \sum_{0 \leq j < n/2} h_{j}\omega^{2ij}$$
$$= \sum_{0 \leq j < n/2} (g_{j} - h_{j})\omega^{2ij}$$
$$= \sum_{0 \leq j < n/2} s_{j}\omega^{2ij}$$
$$= s(\omega^{2i}),$$

where we have used the fact that $\omega^{n/2} = -1$.

Corollary 3.22. Let R be a commutative ring containing a primitive nth root of unity, with $n = 2^k$, and assume $2 \in R^\times$. We can multiply two polynomials in $R[x]$ of degree less than $n/2$ using $O(n \log n)$ operations in R.

Proof. From (1) we have

$$fg = DFT_\omega^{-1}(DFT_\omega(f) \cdot DFT_\omega(g)) = \frac{1}{n} DFT_{\omega^{-1}}(DFT_\omega(f) \cdot DFT_\omega(g))$$
and we note that \(n = 2^k \in R^\times \) is invertible. We can compute \(\omega^0, \ldots, \omega^{n-1} \) using \(O(n) \) multiplications in \(R \) (this also gives us \((\omega^{-1})^0, \ldots, (\omega^{-1})^{n-1} \)). Computing \(\text{DFT}_\omega \) and \(\text{DFT}_{\omega^{-1}} \) via the FFT algorithm uses \(O(n \log n) \) operations in \(R \), computing the pointwise product of \(\text{DFT}_\omega(f) \) and \(\text{DFT}_\omega(g) \) uses \(O(n) \) operations in \(R \), and computing \(1/n \) and multiplying a polynomial of degree less than \(n \) by this scalar uses \(O(n) \) operations in \(R \). \[\square \]

What about rings that do not contain an \(n \)th root of unity? By extending \(R \) to a new ring \(R' := R[\omega]/(\omega^n - 1) \) we can obtain a formal \(n \)th root of unity \(\omega \), and one can then generalize Corollary 3.22 to multiply polynomials in any ring \(R \). Computing \(\text{DFT}_\omega \) and \(\text{DFT}_{\omega^{-1}} \) via the FFT algorithm works in rings \(R \). Thus, under a conjecture about the existence of Mersenne primes, the \(M(n) \) can be replaced with \(2^{64} \) rather than base 2 (the \(a_i \) and \(b_i \) are then integers in \([0, 2^{64} - 1] \)).

Applying the generalization of Corollary 3.22 discussed above to the ring \(\mathbb{Z} \), Schönhage and Strassen [9] obtain an algorithm to multiply two \(n \)-bit integers in time \(O(n \log n \log \log n) \), which gives us a new upper bound

\[M(n) = O(n \log n \log \log n). \]

Remark 3.23. As shown by Fürer [4], this bound can be improved to

\[M(n) = O \left(n \log n \ 2^{O(\log^* n)} \right) \]

where \(\log^* n \) denotes the iterated logarithm, which counts how many times the log function must be applied to \(n \) before the result is less than or equal to 1. Recently the sharper bound

\[M(n) = O \left(n \log n \ 8^{\log^* n} \right) \]

was proved in [8], and under a conjecture about the existence of Mersenne primes, the 8 can be replaced with 4. But these improvements, and even the original Schönhage Strassen algorithm, are primarily of theoretical interest: in practice one uses the “three primes" algorithm sketched below.

The details of the Schoönhage and Strassen algorithm and its subsequent improvements are rather involved. There is a simpler approach that is used in practice which handles integers up to \(2^{60} \); this includes integers that would require 500 petabytes (500,000 terabytes)
to store in memory and is more than enough for any practical application that is likely to arise in the near future. Let us briefly outline this approach.

Write the positive integers \(a, b < 2^{62}\) that we wish to multiply in base \(2^{64}\) as \(a = \sum a_i 2^{64i}\) and \(b = \sum b_i 2^{64i}\), with \(0 \leq a_i, b_i < 2^{64}\), and define the polynomials \(f_a = \sum a_i x^i \in \mathbb{Z}[x]\) and \(f_b = \sum b_i x^i \in \mathbb{Z}[x]\) as above. Our goal is to compute \(f_{ab}(2^{64}) = (f_a f_b)(2^{64})\), and we note that the polynomial \(f_a f_b \in \mathbb{Z}[x]\) has less than \(2^{62}/64 = 2^{56}\) coefficients, each of which is bounded by \(2^{62}2^{64}2^{64} < 2^{184}\).

Rather than working over a single ring \(R\) we will use three finite fields \(\mathbb{F}_p\) of odd characteristic, where \(p\) is one of primes

\[
p_1 := 71 \cdot 2^{57} + 1, \quad p_2 := 75 \cdot 2^{57} + 1, \quad p_3 := 95 \cdot 2^{57} + 1.
\]

Note that if \(p\) is any of the primes \(p_1, p_2, p_3\), then \(\mathbb{F}_p^\times\) is a cyclic group whose order \(p - 1\) is divisible by \(2^{57}\), which implies that \(\mathbb{F}_p\) contains a primitive \(2^{57}\)th root of unity \(\omega\); indeed, for \(p = p_1, p_2, p_3\) we can use \(\omega = \omega_1, \omega_2, \omega_3\), respectively, where \(\omega_1 = 287, \omega_2 = 149, \omega_3 = 55\).

We can thus use the FFT Algorithm above with \(R = \mathbb{F}_p\) to compute \(f_a f_b \mod p\) for each of the primes \(p \in \{p_1, p_2, p_3\}\). This gives us the values of the coefficients of \(f_a f_b \in \mathbb{Z}[x]\) modulo three primes whose product \(p_1 p_2 p_3 > 2^{189}\) is more than large enough to uniquely the coefficients via the Chinese Remainder Theorem (CRT); the time to recover the integer coefficients of \(f_a f_b\) from their values modulo \(p_1, p_2, p_3\) is negligible compared to the time to apply the FFT algorithm over these three fields.

3.6 Kronecker substitution

We now note an important converse to the idea of using polynomial multiplication to multiply integers: we can use integer multiplication to multiply polynomials. This is quite useful in practice, as it allows us take advantage of very fast implementations of FFT-based integer multiplication that are now widely available. If \(f\) is a polynomial in \(\mathbb{F}_p[x]\), we can lift \(f\) to \(\hat{f} \in \mathbb{Z}[x]\) by representing its coefficients as integers in \([0, p - 1]\). If we then consider the integer \(\hat{f}(2^m)\), where \(m = [\log p + \log_2(\deg f + 1)]\), the coefficients of \(\hat{f}\) will appear in the binary representation of \(\hat{f}(2^m)\) separated by blocks of \(m - [\log p]\) zeros. If \(g\) is a polynomial of similar degree, we can easily recover the coefficients of \(\hat{h} = \hat{f} \hat{g} \in \mathbb{Z}[x]\) in the integer product \(N = \hat{f}(2^m) \hat{g}(2^m)\); we then reduce the coefficients of \(\hat{h}\) modulo \(p\) to get \(h = fg\). The key is to make \(m\) large enough so that the \(k\)th block of \(m\) binary digits in \(N\) contains the binary representation of the \(k\)th coefficient of \(\hat{h}\).

This technique is known as Kronecker substitution, and it allows us to multiply two polynomials of degree \(d\) in \(\mathbb{F}_p[x]\) in time \(O(M(d(n + \log d)))\), where \(n = \log p\). Typically \(\log d = O(n)\), in which case this simplifies to \(O(M(n\log n))\). In particular, we can multiply elements of \(\mathbb{F}_q \simeq \mathbb{F}_p[x]/(f)\) in time \(O(M(n))\), where \(n = \log q\), provided that either \(\log \deg f = O(n)\) or \(\log p = O(1)\), which are the two most typical cases, corresponding to large characteristic and small characteristic fields, respectively.

Remark 3.24. When \(\log d = O(n)\), if we make the standard assumption that \(M(n)\) grows super-linearly then using Kronecker substitution is strictly faster (by more than any constant factor) than a layered approach that uses the FFT to multiply polynomials and then recursively uses the FFT for the coefficient multiplications; this is because \(M(dn) = o(M(d)M(n))\).

3.7 Complexity of integer arithmetic

To sum up, we have the following complexity bounds for arithmetic on \(n\)-bit integers:
<table>
<thead>
<tr>
<th>Operation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition/Subtraction</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Multiplication (schoolbook)</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Multiplication (Karatsuba)</td>
<td>$O(n^{\log_2 3})$</td>
</tr>
<tr>
<td>Multiplication (FFT)</td>
<td>$O(n \log n \log \log n)$</td>
</tr>
</tbody>
</table>

References

