21 The Hilbert class polynomial

In the previous lecture we proved that the field of modular functions for \(\Gamma_0(N) \) is generated by the functions \(j(\tau) \) and \(j_N(\tau) := j(N\tau) \), that is, \(\mathbb{C}(\Gamma_0(N)) = \mathbb{C}(j, j_N) \), and we showed that \(\mathbb{C}(j, j_N) \) is a finite extension of \(\mathbb{C}(j) \) of degree \([\Gamma(1) : \Gamma_0(N)] \). We then defined the modular polynomial \(\Phi_N(Y) \) as the minimal polynomial of \(j_N \) over \(\mathbb{C}(j) \) and proved that its coefficients lie in \(\mathbb{Z}[j] \subseteq \mathbb{C}(j) \). Replacing \(j \) with a formal variable \(X \), we obtain a polynomial \(\Phi_N \in \mathbb{Z}[X, Y] \) that gives a canonical defining equation for the modular curve \(X_0(N) \).\(^1\)

In this lecture we will use \(\Phi_N \) to prove that the *Hilbert class polynomial*\(^2\)

\[
H_D(X) := H_\mathcal{O}(X) := \prod_{j(E) \in \text{Ell}_\mathcal{O}(\mathbb{C})} (X - j(E))
\]

also has integer coefficients; here \(\text{Ell}_\mathcal{O}(\mathbb{C}) := \{j(E) : \text{End}(E) \simeq \mathcal{O}\} \) is the set of \(j \)-invariants of elliptic curves \(E/\mathbb{C} \) with complex multiplication (CM) by the imaginary quadratic order \(\mathcal{O} \) with discriminant \(D = \text{disc}(\mathcal{O}) \). Recall that \(D \) uniquely determines \(\mathcal{O} \) (and vice versa), by Theorem 18.18, so the notation \(H_D \) is unambiguous (both \(H_D \) and \(H_\mathcal{O} \) appear in the literature, we will use the former).

The fact that \(H_D \in \mathbb{Z}[x] \) implies that the \(j \)-invariant of any elliptic curve \(E/\mathbb{C} \) with complex multiplication must be an algebraic integer, meaning that \(E \) can actually be defined over a number field (a finite extension of \(\mathbb{Q} \)). This is a remarkable result. It implies that of the uncountably many isomorphism classes of elliptic curves over \(\mathbb{C} \), only countable many have complex multiplication. In order to prove this we will exploit the interpretation of \(X_0(N) \) as the “moduli space” of cyclic \(N \)-isogenies of elliptic curves; our first task is to explain what this means.

21.1 Isogenies

Recall from §18.5 in Lecture 18 that if \(L_1 \subseteq L_2 \) are lattices in \(\mathbb{C} \), and \(E_1 \) and \(E_2 \) are the elliptic curves corresponding to the complex tori \(\mathbb{C}/L_1 \) and \(\mathbb{C}/L_2 \), then the inclusion \(L_1 \subseteq L_2 \) induces an isogeny \(\phi : E_1 \to E_2 \) whose kernel is isomorphic to the finite abelian group \(L_2/L_1 \).

Indeed, we have the commutative diagram

\[
\begin{array}{ccc}
\mathbb{C}/L_1 & \longrightarrow & \mathbb{C}/L_2 \\
\downarrow & & \downarrow \\
E_1(\mathbb{C}) & \longrightarrow & E_2(\mathbb{C})
\end{array}
\]

where the top map \(\iota \) is induced by the inclusion \(L_1 \subseteq L_2 \) (lift from \(\mathbb{C}/L_1 \) to \(\mathbb{C} \) then project to \(\mathbb{C}/L_2 \)). If we replace \(L_2 \) by the homothetic lattice \(NL_2 \), where \(N = [L_2 : L_1] = \text{deg} \phi \), the inclusion \(NL_2 \subseteq L_1 \) induces an isogeny in the reverse direction which, after composing with the isomorphism corresponding to the homothety \(L_2 \sim NL_2 \), is the dual isogeny \(\hat{\phi} : E_2 \to E_1 \).

The composition \(\phi \circ \hat{\phi} \) is the multiplication-by-\(N \) map on \(E_2 \), corresponding to the lattice inclusion \(NL_2 \subseteq L_2 \), with kernel isomorphic to \(L_2/NL_2 \simeq \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z} \).

\(^1\)The curve \(\Phi_N(X, Y) = 0 \) is a singular affine curve with the same function field as \(X_0(N) \); the desingularization of its projective closure is a smooth projective curve isomorphic to \(X_0(N) \).

\(^2\)Some authors use the term *Hilbert class polynomial* only when \(\mathcal{O} \) is a maximal order (they then use the term *ring class polynomial* for the general case); we won’t make this distinction.
Definition 21.1. If L_1 is a sublattice of L_2 for which the group L_2/L_1 is cyclic, then we say that L_1 is a **cyclic sublattice** of L_2. Similarly, an isogeny $\phi: E_1 \to E_2$ is said to be cyclic if its kernel is a cyclic group. If ϕ is induced by the lattice inclusion $L_1 \subseteq L_2$ then ϕ is cyclic if and only if L_1 is a cyclic sublattice of L_2.

As we proved in Corollary 6.12, up to isomorphism, every isogeny is a composition of isogenies of prime degree, which are necessarily cyclic. So we may as well restrict our attention to cyclic isogenies ϕ, which we will show correspond to points on the modular curve $X_0(N)$, with $N = \deg \phi$.

In our proofs we will often restrict to the case where N is prime. We can always decompose ϕ into a composition of isogenies of prime degree, and in fact the prime degree case will suffice for everything we want to prove. It is thus enough for us to understand cyclic sublattices of prime index.

Lemma 21.2. Let $L = [1, \tau]$ be a lattice with $\tau \in \mathbb{H}$ and let N be prime. The cyclic sublattices of L of index N are the lattice $[1, N\tau]$ and the lattices $[N, \tau + k]$, for $0 \leq k < N$.

Proof. The lattices $[1, N\tau]$ and $[N, \tau + k]$ are clearly index N sublattices of L, and they must be cyclic sublattices, since N is prime. Conversely, any sublattice $L' \subseteq L$ can be written as $[d, a\tau + k]$, where d is the least positive integer in L' and the index of L' in L is $ad = N$. Since N is prime, either $d = 1$ and $a = N$, in which case $L' = [1, N\tau]$, or $d = N$ and $a = 1$, in which case $L' = [N, \tau + k]$, and we may assume $0 \leq k < N$. \qed

![Figure 1: The three cyclic sublattices of $[1, \tau]$ of index 2.](image)

Theorem 21.3. For all $j_1, j_2 \in \mathbb{C}$, we have $\Phi_N(j_1, j_2) = 0$ if and only if j_1 and j_2 are the j-invariants of elliptic curves over \mathbb{C} over that are related by a cyclic isogeny of degree N.

Proof for N prime. We will prove the equivalent statement that $\Phi_N(j(L_1), j(L_2)) = 0$ if and only if L_1 is homothetic to a cyclic sublattice of L_2 of index N, equivalently, L_2 is homothetic to a cyclic sublattice of L_1. We may assume without loss of generality that $L_1 = [1, \tau_1]$ and $L_2 = [1, \tau_2]$, where $\tau_1, \tau_2 \in \mathbb{H}$. As in the proof of Theorem 20.17 we have

$$
\Phi_N(j(\tau), Y) = (Y - j(N\tau)) \prod_{k=0}^{N-1} (Y - j(N\gamma_k\tau)),
$$

where $\gamma_k := ST^k$, and

$$
j(N\gamma_k\tau) = j((\begin{smallmatrix} N & 0 \\ 0 & 1 \end{smallmatrix}) ST^k\tau) = j(S(\begin{smallmatrix} 1 & k \\ 0 & \tau \end{smallmatrix}) \tau) = j((\begin{smallmatrix} 1 & k \\ 0 & \tau \end{smallmatrix}) \tau) = j(\frac{\tau + k}{N}).
$$

Thus

$$
\Phi_N(j(L_1), j(L_2)) = \Phi_N(j([1, \tau_1]), j([1, \tau_2])) = \Phi_N(j(\tau_1), j(\tau_2))
$$

is zero if and only if τ_2 is $\text{SL}_2(\mathbb{Z})$-equivalent to $N\tau_1$ or $(\tau_1 + k)/N$, with $0 \leq k < N$, hence if and only if L_2 is homothetic to a cyclic sublattice of L_1 of index N, by Lemma 21.2. \qed
Theorem 21.3 applies more generally to any field that can be embedded in \(\mathbb{C} \), including all number fields. It can be extended via the Lefschetz principle [6, Thm, VI.6.1] to any field of characteristic zero, and as shown by Igusa [4], to fields of positive characteristic \(p \nmid N \). We state the more general version of Theorem 21.3 for future reference.

Theorem 21.4. Let \(N > 1 \) be an integer and let \(k \) be a field of characteristic not dividing \(N \). For all \(j_1, j_2 \in k \) we have \(\Phi_N(j_1, j_2) = 0 \) if and only if \(j_1 \) and \(j_2 \) are the \(j \)-invariants of elliptic curves over \(k \) that are related by a cyclic isogeny of degree \(N \) defined over \(k \).

Remark 21.5. In Theorem 21.3 we could have written \(\Phi_N(j(E_1), j(E_2)) = 0 \) if and only if \(E_1 \) and \(E_2 \) are related by a cyclic isogeny of degree \(N \), because over \(\mathbb{C} \) the \(j \), invariant characterizes elliptic curves up to isomorphism; but this is not true in the more general context of Theorem 21.4. Over fields \(k \) that are not algebraically closed it is not necessarily true that \(\Phi_N(j(E_1), j(E_2)) = 0 \) implies the existence of a cyclic \(N \)-isogeny \(E_1 \to E_2 \); one might need to replace \(E_1 \) or \(E_2 \) by a twist (a curve with the same \(j \)-invariant that is isomorphic over an extension of \(k \) but not necessarily over \(k \)).

Remark 21.6. We should note that if \(\phi : E_1 \to E_2 \) is a cyclic \(N \)-isogeny, the pair of \(j \)-invariants \((j(E_1), j(E_2)) \) does not uniquely determine \(\phi \), not even up to isomorphism. For example, suppose \(\text{End}(E_1) \cong \mathcal{O} \) and \(p \neq \mathfrak{p} \) is a proper \(\mathcal{O} \)-ideal of prime norm \(p \) such that \([p]\) has order 2 in the class group \(\text{cl}(\mathcal{O}) \). Then \(\mathfrak{p}E_1 \cong \mathfrak{p}E_1 \), and the isogenies \(\phi_\mathfrak{p} : E_1 \to \mathfrak{p}E_1 \) and \(\phi_\mathfrak{p} : E_1 \to \mathfrak{p}E_1 \) have distinct kernels but isomorphic images. These isogenies are not isomorphic (there is no automorphism we can compose with one to get the other, their kernels are distinct). In this situation \(\Phi_p(j(E_1), Y) \) will have \(j(E_2) \) as a double root.

The existence of the dual isogeny implies that \(\Phi_N(j_1, j_2) = 0 \) if and only if \(\Phi_N(j_2, j_1) = 0 \). In fact \(\Phi_N(X, Y) = \Phi_N(Y, X) \) is symmetric in the variables \(X \) and \(Y \).

Theorem 21.7. \(\Phi_N(X, Y) = \Phi_N(Y, X) \) for all \(N > 1 \).

Proof. As in the proof of Theorem 21.3, the function \(j(N\gamma \tau) = j(\tau/N) \) is a root of \(\Phi_N(j(Y), Y) \in \mathbb{C}(j)[Y] \) (this is true whether or not \(N \) is prime). We also have the identity \(\Phi_N(j(\tau), j(N\tau)) = 0 \), which implies \(\Phi_N(j(\tau/N), j(\tau)) \) = 0, so \(j(\tau/N) \) is also a root of \(\Phi_N(Y, j) \in \mathbb{C}(j)[Y] \). But \(\Phi_N(j, Y) \) is irreducible in \(\mathbb{C}(j)[Y] \), since it is the minimal polynomial of \(j_N \) over \(\mathbb{C}(j) \), so \(\Phi_N(j, Y) \) must divide \(\Phi_N(Y, j) \) in \(\mathbb{C}(j)[Y] \) (otherwise their GCD would properly divide \(\Phi_N(j, Y) \)). It follows from Theorem 21.3 that \(\Phi_N(j, Y) \) and \(\Phi_N(Y, j) \) have the same degree, since in both cases, for any lattice \(L \subseteq \mathbb{C} \), the number of roots of \(\Phi_N(j(L), Y) \) and \(\Phi_N(Y, j(L)) \) when counted with multiplicity is the number of cyclic sublattices of index \(N \) in \(L \cong \mathbb{Z} \times \mathbb{Z} \), which is the same for every lattice \(L \).

It follows that for prime \(N \) the polynomial \(\Phi_N(X, Y) \) has degree \(N+1 \) in \(X \) and \(Y \).

Example 21.8. For \(N = 2 \) we have

\[
\Phi_2(X, Y) = X^3 + Y^3 - X^2Y^2 + 1488(X^2Y + XY^2) - 162000(X^2 + Y^2) + 40773375XY + 8748000000(X + Y) - 15746400000000.
\]

Note that, per Remark 21.6, we cannot assume the \(j \)-invariants are distinct, but the cyclic sublattices are distinct; some may have the same \(j \)-invariant because distinct sublattices may be homothetic.
As can be seen in this example, the integer coefficients of \(\Phi_N \) are already large when \(N = 2 \), and they grow rapidly as \(N \) increases. For \(N \) prime it is known that the logarithm of the absolute value of the largest coefficient of \(\Phi_N \) is on the order of \(6N \log N + O(N) \), see [2], and it has \(O(N^2) \) coefficients. Thus the total number of bits required to write down \(\Phi_N \) is quasi-cubic in \(N \); in practical terms, \(\Phi_{1009} \) is about 4 GB, and \(\Phi_{10007} \) is about 5 TB. This makes it quite challenging to compute these polynomials; you will explore an efficient method for doing so on Problem Set 12.

21.2 Modular curves as moduli spaces

In the same way that the \(j \)-function defines a bijection from \(Y(1) = \mathbb{H}/\Gamma(1) \) to \(\mathbb{C} \) (which we may regard as an affine curve in \(\mathbb{C}^2 \)), the functions \(j(\tau) \) and \(j_N(\tau) \) define a bijection from \(Y_0(N) = \mathbb{H}/\Gamma_0(N) \) to the affine curve \(\Phi_N(X,Y) = 0 \) via the map
\[
\tau \mapsto (j(\tau), j_N(\tau)).
\]
If \(\{\gamma_k\} \) is a set of right coset representatives for \(\Gamma_0(N) \) then for each \(\gamma_k \) we have
\[
\gamma_k \tau \mapsto (j(\gamma_k \tau), j_N(\gamma_k \tau)) = (j(\tau), j_N(\gamma_k \tau)),
\]
and as in the proof of Theorem 21.3, each of these points corresponds to a cyclic \(N \)-isogeny \(E \to E' \) with \(j(E) = j(\tau) \) and \(j(E') = j_N(\gamma_k \tau) \). We can thus view the modular curve \(Y_0(N) \), equivalently, the non-cuspidal points on \(X_0(N) \), as parameterizing cyclic \(N \)-isogenies.

As noted above such an isogeny is not always uniquely determined by a pair of \(j \)-invariants (these correspond to singular points on the curve \(\Phi_N(X,Y) = 0 \)), but a cyclic \(N \)-isogeny \(\phi: E \to E' \) is uniquely determined by the pair \((E,\langle P\rangle) \), where \(P \) is any generator for \(\ker \phi \) (so \(P \) is a point of order \(N \)). Recall from Theorem 6.11 that every finite subgroup of points on an elliptic curve determines a separable isogeny that is unique up to isomorphism. Every pair \((E,\langle P\rangle) \) thus corresponds to a non-cuspidal point of \(X_0(N) \); two pairs \((E,\langle P\rangle) \) and \((E',\langle P'\rangle) \) correspond to the same point if and only if there exists an isomorphism \(\varphi: E \cong E' \) such that \(\varphi(\langle P\rangle) = \langle P'\rangle \).

With this interpretation the modular curve \(X_0(N) \) can be viewed as the “moduli space” of cyclic \(N \)-isogenies of elliptic curves, each identified by a pair \((E,\langle P\rangle) \), up to the isomorphism defined above. We won’t formally define the notion of a moduli space in this course, but this can be done, and it provides an alternative definition of \(X_0(N) \). The key point from our perspective is that this moduli interpretation is valid over any field, not just \(\mathbb{C} \). The modular curves \(X_0(N) \) play a key role in many algorithms that work with elliptic curves over finite fields, including the Schoof-Elkies-Atkin (SEA) point-counting algorithm (a faster version of Schoof’s algorithm), and fast algorithms to compute Hilbert class polynomials, which are the key to the CM method that we will discuss in the next lecture.

Other modular curves also have characterizations as moduli spaces. We have already seen that the modular curve \(X(1) \) is the moduli space of isomorphism classes of elliptic curves, and for \(N > 1 \) the modular curve \(X(N) \) is the moduli space of triples \((E,P_1,P_2) \), where \(\{P_1,P_2\} \) is a basis for the \(N \)-torsion subgroup of \(E \), and the modular curve \(X_1(N) \) is the moduli space of pairs \((E,P) \), where \(P \) is a point of order \(N \) on \(E \). Note that in each case one considers triples or pairs only up to a suitable isomorphism, as with \(X_0(N) \) above.
Lemma 21.9. We need the following lemma.

Recall from the proof of Theorem 20.17 that we have the set

$$\text{Ell}_O(\mathbb{C}) := \{j(E) \in \mathbb{C} : \text{End}(E) \simeq O\}$$

of equivalence classes of elliptic curves with complex multiplication (CM) by O, and the ideal class group $\text{cl}(O)$ acts on $\text{Ell}_O(\mathbb{C})$ via isogenies, as we now recall. Every elliptic curve E/\mathbb{C} with CM by O is of the form E_b corresponding to the torus \mathbb{C}/b, where b is a proper O-ideal for which $j(b) = j(E)$ (note that $j(b) = j(E)$ depends only on the class $[b]$ in $\text{cl}(O)$). If $[a]$ is an element of $\text{cl}(O)$, then a acts on E_b by the isogeny

$$\phi_a : E_b \rightarrow E_{a^{-1}b}$$

of degree Na induced by the lattice inclusion $b \subseteq a^{-1}b$. As with E_b, the isomorphism class of $E_{a^{-1}b}$ depends only on the class $[a^{-1}b]$ in $\text{cl}(O)$, and we proved that this action is free and transitive, meaning that $\text{Ell}_O(\mathbb{C})$ is a $\text{cl}(O)$-torsor. This implies that the set $\text{Ell}_O(\mathbb{C})$ is finite, with cardinality equal to the class number $h(O) := \# \text{cl}(O)$.

We now turn our attention to the Hilbert class polynomial. Recall that for each imaginary quadratic order O, we have the set

$$\text{Ell}_O(\mathbb{C}) := \{j(E) \in \mathbb{C} : \text{End}(E) \simeq O\}$$

of equivalence classes of elliptic curves with complex multiplication (CM) by O, and the ideal class group $\text{cl}(O)$ acts on $\text{Ell}_O(\mathbb{C})$ via isogenies, as we now recall. Every elliptic curve E/\mathbb{C} with CM by O is of the form E_b corresponding to the torus \mathbb{C}/b, where b is a proper O-ideal for which $j(b) = j(E)$ (note that $j(b) = j(E)$ depends only on the class $[b]$ in $\text{cl}(O)$). If $[a]$ is an element of $\text{cl}(O)$, then a acts on E_b by the isogeny

$$\phi_a : E_b \rightarrow E_{a^{-1}b}$$

of degree Na induced by the lattice inclusion $b \subseteq a^{-1}b$. As with E_b, the isomorphism class of $E_{a^{-1}b}$ depends only on the class $[a^{-1}b]$ in $\text{cl}(O)$, and we proved that this action is free and transitive, meaning that $\text{Ell}_O(\mathbb{C})$ is a $\text{cl}(O)$-torsor. This implies that the set $\text{Ell}_O(\mathbb{C})$ is finite, with cardinality equal to the class number $h(O) := \# \text{cl}(O)$.

We may uniquely identify O by its discriminant D (by Theorem 18.18), and the Hilbert class polynomial

$$H_D(X) = \prod_{j(E) \in \text{Ell}_O(\mathbb{C})} (X - j(E))$$

is the monic polynomial whose roots are the distinct j-invariants of all elliptic curves with CM by O. We now want to use the fact that $\Phi_N \in \mathbb{Z}[X,Y]$ to prove that $H_D \in \mathbb{Z}[X]$. To do this we need the following lemma.

Lemma 21.9. If N is prime then the leading terms of $\Phi_N(X,X) \in \mathbb{Z}[X]$ is $-X^{2N}$.

Proof. Replacing Y with $j(\tau)$ in equation (1) for $\Phi_N(Y)$ yields

$$\Phi_N(j(\tau), j(\tau)) = (j(\tau) - j(N\tau)) \prod_{k=0}^{N-1} (j(\tau) - j\left(\tau + \frac{k}{N}\right)).$$

Recall from the proof of Theorem 20.17 that we have the q-expansions

$$j(N\tau) = \frac{1}{q^N} + \cdots,$$

$$j\left(\frac{\tau + k}{N}\right) = \frac{\zeta_N^k}{q^{1/N}} + \cdots,$$

where $q := e^{2\pi i\tau}$, $\zeta_N := e^{2\pi i/N}$, and ellipses denotes terms involving larger powers of q. Thus

$$j(\tau) - j(N\tau) = -\frac{1}{q^N} + \frac{1}{q} + \cdots,$$

$$j(\tau) - j\left(\frac{\tau + k}{N}\right) = \frac{1}{q} - \frac{\zeta_N^{-k}}{q^{1/N}} + \cdots,$$

which implies that the q-expansion of $f(\tau) = \Phi_N(j(\tau), j(\tau))$ begins $-\frac{1}{q^{2N}} + \cdots$. Since $f(\tau)$ is a polynomial in $j(\tau) = \frac{1}{q} + \cdots$, the leading term of $\Phi_N(X,X)$ must be $-X^{2N}$. \qed
Remark 21.10. Lemma 21.9 does not hold in general; in particular, when N is square $\Phi_N(X, X)$ is not even primitive (its coefficients have a non-trivial common divisor).

Before proving $H_D \in \mathbb{Z}[X]$, we record the following classical result, which was proved for maximal orders by Dirichlet and later generalized by Weber; see [3, p. 190]. Today this is typically cited as a consequence of the Chebotarev4 density theorem, but since the proof of the Chebotarev density theorem actually uses class field theory, a small part of which we are about to prove, we should note that the result we need was proved earlier.

Theorem 21.11. Let \mathcal{O} be an imaginary quadratic order. Every ideal class in $\text{cl}(\mathcal{O})$ contains infinitely many ideals of prime norm.

Proof. This follows from Theorems 7.7 and 9.12 in [3].

Theorem 21.12. The coefficients of the Hilbert class polynomial $H_D(X)$ are integers.

Proof. Let \mathcal{O} be the imaginary quadratic order of discriminant D, let E/\mathbb{C} be an elliptic curve with CM by \mathcal{O}, and let p be a principal \mathcal{O}-ideal of prime norm p (by Theorem 21.11 there are infinitely many choices for p). Then $[p]$ is the identity element of $\text{cl}(\mathcal{O})$, so p acts trivially on $\text{Ell}_\mathcal{O}(\mathbb{C})$. Thus $pE \simeq E$, which implies that, after composing with an isomorphism if necessary, we have a p-isogeny from E to itself, equivalently, an endomorphism of degree p. Such an isogeny is necessarily cyclic, since it has prime degree, so we must have $\Phi_p(j(E), j(E)) = 0$. Thus $j(E)$ is the root of the polynomial $-\Phi_p(X, X)$, which is monic, by Lemma 21.9, and has integer coefficients, by Theorem 20.17. The j-invariant $j(E)$ is thus an algebraic integer, and the elliptic curve E can be defined by a Weierstrass equation $y^2 = x^3 + Ax + B$ whose coefficients lie in the number field $\mathbb{Q}(j(E))$, by Theorem 14.12.

The absolute Galois group $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on the set of elliptic curves defined over number fields via its action on the Weierstrass coefficients A and B: for each field automorphism $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ the curve E^σ is defined by the equation $y^2 = x^3 + \sigma(A)x + \sigma(B)$. Similarly, σ acts on isogenies via its action on the coefficients of the rational map defining the isogeny. If $\phi: E \to E$ is an endomorphism, then so is $\phi^\sigma: E^\sigma \to E^\sigma$, and for any $\phi, \psi \in \text{End}(E)$ we have $(\phi + \psi)^\sigma = \phi^\sigma + \psi^\sigma$ and $(\phi \circ \psi)^\sigma = \phi^\sigma \circ \psi^\sigma$. Thus each $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ induces a ring homomorphism

$$\text{End}(E) \xrightarrow{\sigma} \text{End}(E^\sigma).$$

Applying σ^{-1} to E^σ induces an inverse homomorphism, we thus have a ring isomorphism $\text{End}(E) \simeq \text{End}(E^\sigma)$, which implies that E^σ also has CM by \mathcal{O}. The j-invariant of E is a rational function $1728 \cdot 4A^3/(4A^3 + 27B^2)$ of A and B, so $j(E^\sigma) = j(E)$, and we have shown that $j(E^\sigma) \in \text{Ell}_\mathcal{O}(\mathbb{C})$. It follows that $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on the set $\text{Ell}_\mathcal{O}(\mathbb{C})$, which are the roots of $H_D(X)$. The coefficients of $H_D(X)$ are symmetric polynomials in its roots, hence they are fixed by $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and lie in the fixed field \mathbb{Q}; moreover, they are algebraic integers (since the roots are), so they lie in $\overline{\mathbb{Z}} \cap \mathbb{Q} = \mathbb{Z}$. \hfill \Box

Corollary 21.13. Let E/\mathbb{C} be an elliptic curve with complex multiplication. Then $j(E)$ is an algebraic integer.

From the proof of Theorem 21.12, we now have two groups acting on the roots of $H_D(X)$: the class group $\text{cl}(\mathcal{O})$ and the Galois group $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. In the latter case there is no need

4Many different transliterations of Chebotarev’s Russian name appear in the literature, including Chebotaryov, Chebotarev, Chebotarëv, Čebotarev, Tchebotarev, and Tschebotaröw; none is universally accepted.
to consider the entire Galois group $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, we can always restrict our attention to any Galois subfield $L \subseteq \overline{\mathbb{Q}}$ that contains the splitting field L of $H_D(X)$, since the action of any $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the roots of $H_D(X)$ is determined by its restriction to $\text{Gal}(L/\mathbb{Q})$. We then have two finite group actions, and it is reasonable to ask whether they are in some sense compatible.

In order to obtain compatible actions we do not want to work with the splitting field L of $H_D(X)$ over \mathbb{Q}, since $\text{Gal}(L/\mathbb{Q})$, may contain automorphisms that don’t fix the order \mathcal{O}. But if we instead let L be the splitting field of $H_D(X)$ over $K := \mathbb{Q}(\sqrt{D})$, the Galois group $\text{Gal}(L/K)$ fixes \mathcal{O}, and we will show that its action on $\text{Ell}_\mathcal{O}(\mathbb{C})$ is compatible with that of the class group $\text{cl}(\mathcal{O})$. In fact, $\text{Gal}(L/K) \simeq \text{cl}(\mathcal{O})$. This isomorphism is part of the First Main Theorem of Complex Multiplication, and our next goal is to prove it.

So let \mathcal{O} be the imaginary quadratic order of discriminant D, and let us fix an elliptic curve E_1 with CM by \mathcal{O}. Each $\sigma \in \text{Gal}(L/K)$ can be viewed as the restriction to L of an element of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ that fixes K, thus as in the proof of Theorem 21.12, the elliptic curve E_1^σ also has CM by \mathcal{O}. Therefore $E_1^\sigma \simeq aE_1$ for some proper \mathcal{O}-ideal a, since $\text{cl}(\mathcal{O})$ acts transitively on $\text{Ell}_\mathcal{O}(\mathbb{C})$. If $E_2 \simeq bE_1$ is any other elliptic curve with CM by \mathcal{O}, we then have

$$E_2^\sigma \simeq (bE_1)^\sigma = b^\sigma E_1^\sigma = bE_1^\sigma \simeq baE_1 = abE_1 \simeq aE_2.$$ (2)

The innocent looking identity $(bE_1)^\sigma = b^\sigma E_1^\sigma$ used in (2) is not immediate, it requires a somewhat lengthy argument involving a diagram chase that we omit; see [7, Prop. II.2.5] for a proof. The second identity is immediate, because $b \subset K$ and $\sigma \in \text{Gal}(L/K)$ fixes K; but note that this would not be true if we had instead used $\sigma \in \text{Gal}(L/\mathbb{Q})$.

Since our choice of E_2 was arbitrary, it follows from (2) that the action of σ on $\text{Ell}_\mathcal{O}(\mathbb{C})$ is the same as the action of a on $\text{Ell}_\mathcal{O}(\mathbb{C})$. Because $\text{Ell}_\mathcal{O}(\mathbb{C})$ is a $\text{cl}(\mathcal{O})$-torsor, the map that sends each $\sigma \in \text{Gal}(\overline{K}/K)$ to the unique class $[a] \in \text{cl}(\mathcal{O})$ for which $E_1^\sigma = aE_1$ defines a group homomorphism

$$\Psi : \text{Gal}(L/K) \rightarrow \text{cl}(\mathcal{O}).$$

This homomorphism is injective because, by definition of the splitting field, the only element of $\text{Gal}(L/K)$ that acts trivially on the roots of $H_D(X)$ is the identity element, and the same is true of $\text{cl}(\mathcal{O})$. We summarize this discussion with the following theorem.

Theorem 21.14. Let \mathcal{O} be an imaginary quadratic order of discriminant D and let L be the splitting field of $H_D(X)$ over $K := \mathbb{Q}(\sqrt{D})$. The map $\Psi : \text{Gal}(L/K) \rightarrow \text{cl}(\mathcal{O})$ that sends each $\sigma \in \text{Gal}(L/K)$ to the unique $\alpha_\sigma \in \text{cl}(\mathcal{O})$ for which $j(E)^\sigma = \alpha_\sigma j(E)$ for all $j(E) \in \text{Ell}_\mathcal{O}(E)$ is an injective group homomorphism.

We thus have an embedding of $\text{Gal}(L/K)$ in $\text{cl}(\mathcal{O})$ that is compatible with the actions of both groups on $\text{Ell}_\mathcal{O}(\mathbb{C})$. It remains only to prove that Ψ is surjective, which is equivalent to proving that $H_D(X)$ is irreducible over K.

References

