The n-torsion subgroup of an elliptic curve

Theorem (Lecture 5)

The multiplication-by-n map $[n]$ has degree n^2 that is separable if and only if $n \perp p$.

Theorem

Let E/k be an elliptic curve over a field of characteristic p. For each prime ℓ we have

$$E[\ell^e] \simeq \begin{cases} \mathbb{Z}/\ell^e\mathbb{Z} \oplus \mathbb{Z}/\ell^e\mathbb{Z} & \text{if } \ell \neq p, \\ \mathbb{Z}/\ell^e\mathbb{Z} \text{ or } \{0\} & \text{if } \ell = p. \end{cases}$$

When $E[\ell] \simeq \{0\}$ we say that E is supersingular, otherwise E is ordinary.

Corollary

Every finite subgroup of $E(\overline{k})$ can be written as the sum of two (possibly trivial) cyclic groups with at most one of order divisible by p.
The group of homomorphisms between elliptic curves

Let E_1/k and E_2/k be elliptic curves.

Definition

$\text{Hom}(E_1, E_2)$ is the abelian group of morphisms $\alpha : E_1 \to E_2$ under pointwise addition. Note that $\alpha \in \text{Hom}(E_1, E_2)$ is defined over k (it is an arrow in the category of E/k).

Lemma

Let $\alpha, \beta \in \text{Hom}(E_1, E_2)$. If $\alpha(P) = \beta(P)$ for all $P \in E_1(\bar{k})$ then $\alpha = \beta$.

Proof: $\ker(\alpha - \beta) = E_1(\bar{k})$ is infinite so $\alpha - \beta = 0$.

Lemma

For all $n \in \mathbb{Z}$ and $\alpha \in \text{Hom}(E_1, E_2)$ we have $[n] \circ \alpha = n\alpha = \alpha \circ [n]$.

Proof: We have $([-1] \circ \alpha)(P) = -\alpha(P) = \alpha(-P) = (\alpha \circ [-1])(P)$ and $([n] \circ \alpha)(P) = n\alpha(P) = \alpha(P) + \cdots + \alpha(P) = \alpha(nP) = (\alpha \circ [n])(P)$.
The cancellation law for isogenies

For $\delta \in \text{Hom}(E_0, E_1)$, $\alpha, \beta \in \text{Hom}(E_1, E_2)$ and $\gamma \in \text{Hom}(E_2, E_3)$ we have

$$(\alpha + \beta) \circ \gamma = \alpha \circ \gamma + \beta \circ \gamma \quad \text{and} \quad \delta \circ (\alpha + \beta) = \delta \circ \alpha + \delta \circ \beta$$

since these identities hold pointwise.

Lemma

Let $\delta: E_0 \to E_1$, $\alpha, \beta: E_1 \to E_2$, and $\gamma: E_2 \to E_3$ be isogenies. Then

$$\delta \circ \alpha = \delta \circ \beta \implies \alpha = \beta$$

$$\alpha \circ \gamma = \beta \circ \gamma \implies \alpha = \beta.$$

Proof: Isogenies are surjective, so $\alpha, \beta, \gamma, \delta$ and their compositions not zero maps.

Then $\delta \circ \alpha = \delta \circ \beta \Rightarrow \delta \circ \alpha - \delta \circ \beta = 0 \Rightarrow \delta \circ (\alpha - \beta) = 0 \Rightarrow \alpha - \beta = 0 \Rightarrow \alpha = \beta$

and $\alpha \circ \gamma = \beta \circ \gamma \Rightarrow \alpha \circ \gamma - \beta \gamma = 0 \Rightarrow (\alpha - \beta) \circ \gamma = 0 \Rightarrow \alpha - \beta = 0 \Rightarrow \alpha = \beta$.
The dual isogeny

Definition

Let $\alpha : E_1 \to E_2$ be an isogeny of elliptic curves of degree n. The dual isogeny is the unique isogeny $\hat{\alpha}$ for which $\hat{\alpha} \circ \alpha = [n]$. We also define $[\hat{0}] := 0$.

Uniqueness follows from the cancellation law. Existence is nontrivial (see notes).

Lemma

(1) If $\hat{\alpha} \circ \alpha = [n]$ then $\alpha \circ \hat{\alpha} = [n]$, that is, $\hat{\alpha} = \alpha$, and for $n \in \mathbb{Z}$ we have $[\hat{n}] = [n]$.

(2) For any $\alpha, \beta \in \text{Hom}(E_1, E_2)$ we have $\alpha + \beta = \hat{\alpha} + \hat{\beta}$.

(3) For any $\alpha \in \text{Hom}(E_2, E_3)$ and $\beta \in \text{Hom}(E_1, E_2)$ we have $\alpha \circ \beta = \hat{\beta} \circ \hat{\alpha}$.

Proof: (1) $(\alpha \circ \hat{\alpha}) \circ \alpha = \alpha \circ (\hat{\alpha} \circ \alpha) = \alpha \circ [n] = [n] \circ \alpha$, and $[n] \circ [n] = [n^2] = [\text{deg}[n]]$.

(2) Deferred to Lecture 23.

(3) $(\hat{\beta} \circ \hat{\alpha}) \circ (\alpha \circ \beta) = \hat{\beta} \circ [\text{deg} \alpha] \circ \beta = [\text{deg} \alpha] \hat{\beta} \circ \beta = [\text{deg} \alpha] \circ [\text{deg} \beta] = [\text{deg}(\alpha \circ \beta)]$.

The endomorphism ring of an elliptic curve

Definition

\(\text{End}(E) \) is the ring with additive group is \(\text{Hom}(E, E) \) and multiplication \(\alpha \beta := \alpha \circ \beta \).

The additive identity is \(0 := [0] \) and the multiplicative identity is \(1 := [1] \).

The distributive laws are verified pointwise.

Note that \(\alpha \beta \neq 0 \) whenever \(\alpha, \beta \neq 0 \) (by surjectivity), so \(\text{End}(E) \) has no zero divisors.

Lemma

The map \(n \mapsto [n] \) defines an injective ring homomorphism \(\mathbb{Z} \mapsto \text{End}(E) \) that agrees with scalar multiplication.

Proof: \([m + n] = [m] + [n] \), \([mn] = [m] \circ [n] \), and \(m \neq 0 \Rightarrow [m] \neq 0 \) (finite kernel), and we note that \(([n] \alpha)(P) = [n](\alpha(P)) = n\alpha(P) = (n\alpha)(P) \) for all \(P \in E(k) \).

In \(\text{End}(E) \) we are thus free to replace \([n] \) with \(n \) (so \(\alpha + n \) means \(\alpha + [n] \), for example).
The trace of an endomorphism

Lemma

For any \(\alpha \in \text{End}(E) \) *we have* \(\alpha + \hat{\alpha} = 1 + \deg \alpha - \deg(1 - \alpha) \).

Proof: \(\deg(1 - \alpha) = (1 - \alpha)(1 - \alpha) = (1 - \hat{\alpha})(1 - \alpha) = 1 - (\alpha + \hat{\alpha}) + \deg(\alpha) \).

Definition

The trace of \(\alpha \in \text{End}(E) \) is the integer \(\text{tr} \alpha = \alpha + \hat{\alpha} \).

Theorem

For all \(\alpha \in \text{End}(E) \) *both* \(\alpha \) *and* \(\hat{\alpha} \) *are solutions to* \(x^2 - (\text{tr} \alpha)x + \deg \alpha = 0 \) *in* \(\text{End}(E) \).

Proof: \(\alpha^2 - (\text{tr} \alpha)\alpha + \deg \alpha = \alpha^2 - (\alpha + \hat{\alpha})\alpha + \hat{\alpha}\alpha = 0 \) *and similarly for* \(\hat{\alpha} \).
Restricting endomorphisms to $E[n]$

Definition

For any $\alpha \in \text{End}(E)$ its restriction to $E[n]$ is denoted $\alpha_n \in \text{End}(E[n])$.

Let $n \geq 1$ be coprime to the characteristic and let $E[n] \simeq \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z} = \langle P_1, P_2 \rangle$. Then we can view α_n as the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, where

- $\alpha(P_1) = aP_1 + bP_2$
- $\alpha(P_2) = cP_1 + dP_2$

The determinant and trace of this matrix do not depend on our choice of P_1 and P_2.

Theorem

Let $\alpha \in \text{End}(E)$ and let $n \geq 1$ be coprime to the characteristic. Then

$$\text{tr } \alpha = \text{tr } \alpha_n \pmod{n} \quad \text{and} \quad \deg \alpha = \det \alpha_n \pmod{n}.$$