18.786 PROBLEM SET 2

(1) Recall that for F a number field (i.e., a finite extension of \mathbb{Q}), we have \mathbb{A}_F the
topological ring of adèles, and its units \mathbb{A}_F^\times form the topological group of idèles.
(a) Show that the canonical map $\hat{\mathbb{Z}}^\times \times \mathbb{Q}^\times \times \mathbb{R}^{\geq 0} \to \mathbb{A}_\mathbb{Q}^\times$ is an isomorphism.
(b) For F a number field, show that:

$$
\left(\prod_v \mathcal{O}_{F_v}^\times \right) \mathbb{A}_F^\times / F^\times
$$

is canonically isomorphic to the class group of F, where if v is an infinite place, $\mathcal{O}_{F_v} := F_v$. Here “canonically” means that you should show that such an isomorphism is uniquely characterized by the property that for each prime ideal \mathfrak{p}, the composite map:

$$
\mathbb{Z} = \mathcal{O}_{F_p}^\times / F_p^\times \leftrightarrow \left(\prod_v \mathcal{O}_{F_v}^\times \right) \mathbb{A}_F^\times \to \left(\prod_v \mathcal{O}_{F_v}^\times \right) \mathbb{A}_F^\times / F^\times \simeq \text{Cl}(F)
$$

maps 1 to the ideal class of \mathfrak{p}.
(c) Similarly, show that the profinite completion of:

$$
\left(\prod_v \mathcal{O}_{F_v}^\times \right) \mathbb{A}_F^\times / F^\times
$$

is isomorphic to the narrow class group of F.
(d) For every number field F, show that the canonical map $(\hat{\mathbb{Z}} \times \mathbb{R}) \otimes F \to \mathbb{A}_F$ is an isomorphism.

(2) Recall that $\mathbb{Q}_p^\times / (\mathbb{Q}_p^\times)^2$ has order 8, so \mathbb{Q}_2 has 7 (isomorphism classes of) quadratic extensions, corresponding to $\mathbb{Q}_2[\sqrt{d}]$ for d running over a class of coset representatives for the non-squares in \mathbb{Q}_2^\times.
(a) Using the fact that an element of \mathbb{Z}_2^\times is a square if and only if it is congruent to 1 modulo $8\mathbb{Z}_2$, show that these coset representatives can be taken to be $d = 2, 3, 5, 6, 7, 10, 14$.
(b) By the general structure theory of nonarchimedean local fields, \mathbb{Q}_2 admits a single unramified quadratic extension. Which value of d above does it correspond to? How does this relate to the explicit formula you found last week for the Hilbert symbol for \mathbb{Q}_2?

1This is the group of fractional ideals of F modulo principal ideals defined by totally positive elements of F^\times, i.e., elements x of F^\times such that for every embedding $F \to \mathbb{R}$, $i(x) > 0$.

Date: February 16, 2016.
(c) For each d as above, find a uniformizer in the field $\mathbb{Q}_2[\sqrt{d}]$, and compute its norm in \mathbb{Q}_2.

(3) Recall the definition of the quaternion algebra $H_{a,b}$ associated to $a, b \in K$: it is the K-algebra with generators i and j with relations $i^2 = a$, $j^2 = b$, and $ij = -ji$.

(a) Let $K = \mathbb{Q}_2$. Show that every $d \in \mathbb{Q}_2$ admits a square root in $H_{-1,-1}$, i.e., for every d there exists $x \in H$ with $x^2 = d$.

(b) Let K be a nonarchimedean local field of odd residue characteristic, and let $a, b \in K^\times$ with Hilbert symbol $(a, b) = -1$. Show that every element of K admits a square root in $H_{a,b}$.

(4) Show that a local field $K \neq \mathbb{C}$ contains only finitely many roots of unity.