LECTURE 23

Proof of the Second Inequality

Our goal for this lecture is to prove the “second inequality”: that for all extensions \(E/F \) of global fields, we have \(H^1(G, C_E) = 0 \), where \(C_E := \mathbb{A}_E^\times / E^\times \) is the “idèle class group” of \(E \). Our main case is when \(E/F \) is cyclic of order \(p \), and \(\zeta_p \in F \) for some primitive \(p \)-th root of unity \(\zeta_p \), and we will reduce to this case at the end of the lecture (note that \(\text{char}(F) = 0 \) as we are assuming that \(F \) is a number field).

In this case, it suffices to show that
\[
\# \hat{H}^0(C_E) = \#(C_F/NC_E) = \#(\mathbb{A}_F^\times / F^\times \cdot N(\mathbb{A}_E^\times)) \leq p.
\]
Indeed, by the “first inequality,” we know that
\[
\# \hat{H}^0(C_E) = \#(C_F/NC_E) = p,
\]
hence \(p \cdot \# \hat{H}^1(C_E) = \# \hat{H}^0(C_E) \leq p \) implies \(\# \hat{H}^1(C_E) = 1 \), as desired. Our approach will be one of “trial and error”—that is, we’ll try something, which won’t quite be good enough, and then we’ll correct it.

Fix, once and for all, a finite set \(S \) of places of \(F \) such that
1. if \(v \mid \infty \), then \(v \in S \);
2. if \(v \mid p \), then \(v \in S \);
3. \(\mathbb{A}_F^\times = F^\times \cdot \mathbb{A}_{F,S}^\times \), where we recall that
\[
\mathbb{A}_{F,S}^\times := \prod_{v \in S} F_v^\times \times \prod_{v \notin S} O_{F,v}^\times
\]
and that this is possible by Lemma 20.12;
4. \(E = F(\sqrt[p]{u}) \), for some \(u \in O_{F,S}^\times := F^\times \cap \mathbb{A}_{F,S}^\times \) are the “\(S \)-units” of \(F \).

This is possible by Kummer Theory.

Note that this last condition implies that \(E \) is unramified outside of \(S \), as \(u \) is an integral element in any place \(v \notin S \), and since \(p \) is prime to the order of the residue field of \(F_v \) as all places dividing \(p \) are in \(S \) by assumption, \(F_v(\sqrt[p]{u})/F_v \) is an unramified extension.

An important claim, to be proved later in a slightly more refined form, is the following:

Claim 23.1. \(u \in O_{F,S}^\times \) is a \(p \)-th power if and only if its image in \(F_v^\times \) is a \(p \)-th power for each \(v \in S \).

Let
\[
\Gamma := \prod_{v \in S} (F_v^\times)^p \times \prod_{v \notin S} O_{F,v}^\times \subseteq \mathbb{A}_{F,S}^\times.
\]
Then we have the following claims:

Claim 23.2. \(O_{F,S}^\times \cap \Gamma = (O_{F,S}^\times)^p \).
Proof. This follows trivially from the previous claim.

Claim 23.3. $\Gamma \subseteq N(\mathcal{A}_E^\times)$.

Proof. The extension E/F is unramified at each $v \notin S$, hence the factor $\prod_{v \notin S} \mathcal{O}_{F,v}^\times \subseteq N(\mathcal{A}_E^\times)$. Since p kills $H^0(E^\times_w)$, for a choice of $w | v$, it follows that the factor $\prod_{v \in S} (F_v^\times)^p \subseteq N(\mathcal{A}_E^\times)$ as well.

Thus,

$$\#(\mathcal{A}_F^\times / F^\times \cdot N(\mathcal{A}_E^\times)) \leq \#(\mathcal{A}_F^\times / F^\times \cdot \Gamma),$$

and we have a short exact sequence

$$1 \to \mathcal{O}_{F,S}^\times / (\mathcal{O}_{F,S}^\times \cap \Gamma) \to \mathcal{A}_F^\times / \Gamma \to \mathcal{A}_F^\times / (F^\times \cdot \Gamma) \to 1.$$
(4) any $u \in \mathcal{O}_{F,S,T}^\times$ is a pth power if and only if $u \in F_v^\times$ is a pth power for all $v \in S$.

Note the key difference here from earlier: in property (4), we do not require that $u \in (F_v^\times)^p$ for all $v \in S \cup T$, merely for all $v \in S$. Given such a T, we redefine Γ by

$$\Gamma := \prod_{v \in S} (F_v^\times)^p \times \prod_{v \in T} F_v^\times \times \prod_{v \notin S \cup T} \mathcal{O}_{F_v}^\times.$$

Claim 23.5. $\Gamma \subseteq N(\mathbb{A}_E^\times)$.

Proof. Property (3) implies the claim for the second factor; the first and third follow as before.

Redoing our calculations with $\mathbb{A}_{F,S,T}^\times$ instead of \mathbb{A}_F^\times, we obtain

$$\#(\mathbb{A}_{F,S,T}^\times/\Gamma) = p^{2\#S}$$

as before by property (4), and

$$\#(\mathcal{O}_{F,S,T}^\times/(\mathcal{O}_{F,S,T}^\times \cap \Gamma)) = p^{#(S \cup T)} = p^{2\#S-1},$$

again as before, hence their quotient is p, as desired! Thus, it suffices to prove the claim above.

Claim 23.6. For any abelian extension F'/F of global fields, the Frobenius elements for $v \notin S$ generate $\text{Gal}(F'/F)$.

We’d like to prove this purely algebraically, without the Chebotarev density theorem (which, anyhow, gives a slightly different statement).

Proof. Let H be the subgroup generated by all Frobenii for $v \notin S$, and let $F'' := (F')^H$ be the fixed field. We’d like to show that $F'' = F$. Note that Frobenius is trivial in $\text{Gal}(F'/F)/H = \text{Gal}(F''/F)$ for all $v \notin S$, hence every $v \notin S$ splits in F''/F (as they are unramified by assumption). Thus, $F_w' = F_v$ for all $w | v$ and $v \notin S$, and we claim that this is impossible.

We may assume that F''/F is a degree-n cyclic extension (replacing it by a smaller extension if necessary). By the first inequality, $\chi(C_{F''}) = n$, which gives

$$\#(\mathbb{A}_{F'}^\times / N(\mathbb{A}_{F''}^\times) \cdot F^\times) = \#H^0(C_{F''}) \geq n.$$

But because this extension is split for all $v \notin S$, we have $N((F_v'')^\times) = F_v^\times$ trivially, and therefore $\prod_{v \notin S} F_v^\times \subseteq N(\mathbb{A}_{F''}^\times)$, where this is the restricted direct product. Strong approximation then gives that $F^\times \cdot \prod_{v \notin S} F_v^\times$ is dense in \mathbb{A}_F^\times, and since it is also open, this is a contradiction unless $n = 1$, as desired.

We’d like to apply this claim for $F' := F(\{ \sqrt[p]{u} : u \in \mathcal{O}_{F,S}^\times \})$. First, a claim:

Claim 23.7. $\text{Gal}(F'/F) = (\mathbb{Z}/p\mathbb{Z})^{#S}$, for F' as above.

Proof. This is, in essence, Kummer theory, as $\mathcal{O}_{F,S}^\times/(\mathcal{O}_{F,S}^\times)^p \subseteq F^\times/(F^\times)^p$. We know that all exponent-p extensions of F are given by adjoining pth roots of elements of F^\times. The Galois group must be a product of copies of $\mathbb{Z}/p\mathbb{Z}$, but some of these subgroups may coincide—iterated application of Kummer theory gives the statement.

□
Now, we have $F'/E/F$, as E/F was assumed to be obtained by adjoining the pth root of some S-unit. Choose places $w_1,\ldots,w_{#S-1}$ of E that do not divide any places of S, whose Frobenius give a basis for $\text{Gal}(F'/E) \simeq (\mathbb{Z}/p\mathbb{Z})^{#S-1}$, which is possible by the argument of Claim 23.6. Then let $T := \{v_1,\ldots,v_{#S-1}\}$ be the restrictions of the w_i to F.

Claim 23.8. Each $v \in T$ is split in E.

Proof. Since $\text{Frob}_v \in \text{Gal}(F'/E)$, it acts trivially on E, so $\text{Gal}(E_w/F_v)$ is trivial for any $w \mid v$, as desired.

This establishes condition (3) for T; it remains to show condition (4), as conditions (1) and (2) are implicit in the construction of T.

Claim 23.9. An element $x \in \mathcal{O}_{F,S,T}^\times$ is a pth power if and only if $x \in (F_v^\times)_p$ for every $v \in S$.

Proof. **Step 1.** We claim that

$$\mathcal{O}_{F,S}^\times \cap (E^\times)_p = \{x \in \mathcal{O}_{F,S}^\times : x \in (F_v^\times)_p \text{ for all } v \in T\}.$$

The forward inclusion is trivial as $(F_v^\times)_p = (E_w^\times)_p$ by the previous claim. For the converse, note that for any $x \in \mathcal{O}_{F,S}^\times$, we have an extension $F'/E(\sqrt[p]{\mathcal{O}})/E$. If $x \in (E^\times)_p$ for each $w \mid v$ and $v \in T$, then this extension is split at w, so Frob_w acts trivially on $E(\sqrt[p]{\mathcal{O}})$, hence $\text{Gal}(F'/E)$ acts trivially on $E(\sqrt[p]{\mathcal{O}})$ as it is generated by these Frobenius, hence $E(\sqrt[p]{\mathcal{O}}) = E$ and $x \in (E^\times)_p$ as desired.

Step 2. Now we claim that the canonical map

$$\mathcal{O}_{F,S}^\times \xrightarrow{\varphi} \prod_{v \in T} \mathcal{O}_{F_v}^\times/(\mathcal{O}_{F_v}^\times)_p$$

is surjective. This is the step that really establishes the limit on the size of T from which the second inequality falls out perfectly. We will proceed by computing the orders of both sides. By Step 1, we have

$$\text{Ker}(\varphi) = \{x \in \mathcal{O}_{F,S}^\times : x \in (E^\times)_p\}.$$

Then $\mathcal{O}_{F,S}^\times/\text{Ker}(\varphi)$ has order $p^{#S-1}$. Indeed, we computed earlier that $\mathcal{O}_{F,S}^\times/(\mathcal{O}_{F,S}^\times)_p$ has order $p^{#S}$, and since

$$(\mathcal{O}_{F,S}^\times)_p = \{x \in \mathcal{O}_{F,S}^\times : x \in (F^\times)_p\}$$

and E/F is a degree-p extension obtained by adjoining the pth root of some S-unit, it follows that $[\text{Ker}(\varphi) : (\mathcal{O}_{F,S}^\times)_p] = p$. Now, using the version of our earlier formula for $\mathcal{O}_{F_v}^\times$ (rather than F_v^\times), the right-hand side has order

$$\prod_{v \in T} \frac{\#\mathcal{O}_{F_v}}{|p|_v} = \frac{p^{#T}}{p^{#S-1}},$$

so the map is indeed surjective.

Step 3. We’d now like to establish the claim: that if $x \in (F_v^\times)_p$ for all $v \in S$, then $x \in (\mathcal{O}_{F,S,T}^\times)_p$ (the converse is trivial). We’d like to show that $F(\sqrt[p]{\mathcal{O}}) = F$.

Set

$$\Gamma := \prod_{v \in S} F_v^\times \times \prod_{v \in T} (\mathcal{O}_{F_v}^\times)_p \times \prod_{v \in S \cup T} \mathcal{O}_{F_v}^\times \subseteq \mathcal{A}_{F,S}^\times,$$
where this is again a different Γ from earlier. Then in fact,
\[\Gamma \subseteq N(A_F^\times) \subseteq A_F^\times, \]
where the third term is because $F(\sqrt[p]{x})/F$ is unramified outside of $S \cup T$, the second because $[F(\sqrt[p]{x}) : F] \leq p$, and the first because the extension is split at all places of S by assumption. Now, we want to show that $F^\times \cdot \Gamma = \hat{A}_F^\times$, because the first inequality then implies the result as in Claim 23.6. By Step 2, we have
\[\mathcal{O}_{F,S}^\times \rightarrow \prod_{v \in T} \mathcal{O}_{F_v}^\times / (\mathcal{O}_{F_v}^\times)^p = \hat{A}_{F,S}^\times / \Gamma, \]
and hence $\mathcal{O}_{F,S}^\times \cdot \Gamma = \hat{A}_{F,S}^\times$. This implies that
\[F^\times \cdot \Gamma = F^\times \cdot \hat{A}_{F,S}^\times = \hat{A}_F^\times \]
by assumption on S. □

Now we’d like to infer the general case of the second inequality from the specific case proven above. The first step is as follows:

CLAIM 23.10. If the second inequality holds for any cyclic order-p extension for which the base field contains a pth root of unity, then it holds for any cyclic order-p extension.

PROOF. Let E/F be a degree-p cyclic extension of global fields. Recall that the second inequality for E/F is equivalent to the existence of a canonical injection
\[Br(F/E) \hookrightarrow \bigoplus_{v \in M_F} Br(F_v). \]
Indeed, we have an short exact sequence
\[0 \rightarrow E^\times \rightarrow \hat{A}_E^\times \rightarrow C_E \rightarrow 0, \]
and the long exact sequence on cohomology then gives
\[H^1(G, \hat{A}_E^\times) \rightarrow H^1(G, C_E) \rightarrow Br(F/E) \rightarrow \bigoplus_{v} Br(F_v/E_w) \subseteq \bigoplus_{v} Br(F_v) \]
for some choice of $w \mid v$, where the first equality is by Hilbert’s Theorem 90. In order to show the vanishing of $H^1(G, C_E)$, it suffices to show that the final map is injective. Now, the field extensions
\[
\begin{array}{ccc}
E(\zeta_p) & \rightarrow & F(\zeta_p) \\
\downarrow & & \downarrow \\
E & \rightarrow & F(\zeta_p)
\end{array}
\]
induce a commutative diagram

\[
\begin{array}{ccc}
Br(F/E) & \xrightarrow{\alpha} & \bigoplus_v Br(F_v/E_v) \\
\downarrow \gamma & & \downarrow \delta \\
\times [F(\zeta_p):F] Br(F(\zeta_p)/E(\zeta_p)) & \xrightarrow{\beta} & \bigoplus_v Br(F(\zeta_p)_w) \\
\downarrow & & \downarrow \\
Br(F/E),
\end{array}
\]

where the left-most maps are the restriction and inflation maps on cohomology, respectively, using the cohomological interpretation of the Brauer group (see Problem 2 of Problem Set 7). Moreover, the composition is injective on $Br(F/E)$, as it is p-torsion (by Problem 2(c)), and $[F(\zeta_p):F] \mid (p-1)$. Thus, γ is injective as well. Since the second equality holds for $E(\zeta_p)/F(\zeta_p)$ by assumption, β is injective, hence α is injective as well. □

Claim 23.11. If the second inequality holds for any cyclic order-p extension of number fields, then it holds for any extension.

Proof. We’d like to show that $H^1(G, C_E) = 0$. As for any Tate cohomology group of a finite group, we have an injection $H^1(G, C_E) \hookrightarrow \bigoplus_p H^1(G_p, C_E)$, where G_p is the p-Sylow subgroup of G. Thus, we may assume that G is a p-group. Since every p-group G contains a normal subgroup H isomorphic to $\mathbb{Z}/p\mathbb{Z}$, we may assume that we have field extensions $E_2/E_1/F$, where $\text{Gal}(E_2/E_1) \simeq H$ and $\text{Gal}(E_1/F) \simeq G/H$. We may assume that the theorem holds for H acting on E_2 and G/H acting on E_1, so we may simply repeat the sort of argument showing injectivity on Brauer groups in the proof of the previous claim.

First, we claim that $C^H_{E_2} = C_{E_1}$. Indeed, we have a short exact sequence

\[0 \to E_2^\times \to \mathbb{A}_{E_2}^\times \to C_{E_2} \to 0,
\]

and the long exact sequence on cohomology then gives

\[0 \to H^0(H, E_2^\times) \to H^0(H, \mathbb{A}_{E_2}^\times) \to H^0(H, C_{E_2}) \to H^1(H, E_2^\times) \to 0,
\]

by Hilbert’s theorem 90. Note that $\mathbb{A}_{E_2}^\times H = \mathbb{A}_{E_1}^\times$ as taking invariants by a finite group commutes with direct limits and products in the definition of the adèles.

Then we have

\[\text{hKer} \left(C^{hG}_{E_2} = (C^{hH}_{E_2})^H \to (\tau^{\leq 2} C^{hH}_{E_2})^H \right) \simeq \left(\tau^{\leq 0} C^{hH}_{E_2} \right)^{hG/H} = (C_{E_1})^{hG/H},
\]

where the first equality is by Problem 3 of Problem Set 6, the map follows by definition of truncation, the quasi-isomorphism is because $H^1(H, C_{E_2})$ vanishes by assumption, and finally, the second expression is simply the naive H-invariants of C_{E_2}, as the truncation kills all cohomologies in degrees greater than 0, so the
previous claim gives the equality. The long exact sequence on cohomology then gives

\[H^1((C_{E_1})^{hG/H}) \rightarrow H^1((C_{E_2})^{hG}) \rightarrow H^1((\tau^{\geq 2}C_{E_2}^{hG/H})^{hG/H}) \]

as the rightmost complex is in degrees at least 2. Thus, \(H^1(G, C_{E_2}) = 0 \), as desired. \qed