ALGEBRAIC NUMBER THEORY

LECTURE 12 NOTES

1. Section 5.5

Note that \(\tau(1)^2 = (\frac{-1}{p}) \) holds in characteristic 0 as well as characteristic \(q \) (set \(w = e^{2\pi i/p} \)), since it doesn’t use any property of finite fields. It allows us to see what the unique quadratic subfield of \(\mathbb{Q}(\zeta_p) \) is: start with a generator \(\zeta_p = w \) of \(\mathbb{Q}(\zeta_p) \) and symmetrize with respect to the unique subgroup of index 2 of the Galois group (which is isomorphic to \((\mathbb{Z}/p\mathbb{Z})^* \) under \(a \in (\mathbb{Z}/p\mathbb{Z})^* \mapsto (\zeta_p \mapsto \zeta^a_p) \)). The subgroup consists of the squares in \((\mathbb{Z}/p\mathbb{Z})^* \), so the quadratic extension is generated by \(\sum_{a \in (\mathbb{F}_p)^*} \zeta^a_p \) if the sum is nonzero. This sum equals

\[
\sum_{a \in (\mathbb{F}_p)^*} \frac{1}{2} \left(1 + \left(\frac{a}{p}\right)\right) \zeta^a_p = -\frac{1}{2} + \frac{1}{2} \sum_{a \in \mathbb{F}_p^*} \left(\frac{a}{p}\right) \zeta^a_p = \frac{\tau(1) - 1}{2}.
\]

This sum is nonzero since \(|\tau(1)| = \sqrt{p} \). So the quadratic subfield in question is indeed \(\mathbb{Q}(\sqrt{\frac{-1}{p}}) \) which is \(\mathbb{Q}(\sqrt{p}) \) if \(p \equiv 1 \mod 4 \) and \(\mathbb{Q}(\sqrt{-p}) \) if \(p \equiv 3 \mod 4 \).

We know the Gauss sum up to sign since we know its square. For the computation of the sign see for example Flath’s book on number theory, which has a nice proof using the finite Fourier transform. For a good introduction to Gauss and Jacobi sums see Ireland and Rosen’s book.

2. Section 5.6

To see that if \(n \) is a sum of two squares then every prime which is 3 mod 4 divides \(n \) to an even power we argue by contradiction. Let \(n \) be a smallest counterexample and let \(p \equiv 3 \mod 4 \) divide \(n \) to an odd power. Write \(n = a^2 + b^2 \) and notice that \(p \) cannot divide \(a \) or \(b \) since then it would have to divide both (sum of their squares is divisible by \(p \)), and then \(n/p^2 = (a/p)^2 + (b/p)^2 \) would furnish a smaller counterexample. So \(p \nmid b \) in particular, and so \((ab^{-1})^2 \equiv -1 \mod p \), which contradicts \(p \equiv 3 \mod 4 \).

3. Section 5.7

Proof of four squares theorem. By multiplicativity of quaternion norms, it’s enough to see that every prime is a sum of four squares. Since this is trivial for 2, assume
p is an odd prime. Now, the Chevalley-Warning theorem shows that for every p, there are integers a, b such that $a^2 + b^2 + 1 \equiv 0 \pmod{p}$. So let’s assume we have

$$x^2 + y^2 + z^2 + w^2 = mp$$

for some positive integer m. We can reduce $x, y, z, w \pmod{p}$ to assume their absolute values are less than $p/2$ (since p is odd). Then the LHS is less than $4(p/2)^2 = p^2$, so $m < p$. If $m = 1$ we are done. So assume $m > 1$. We will then produce another solution with smaller m. Since there are only finitely many positive integers less than m, eventually we will reach $m = 1$. Now if x, y, z, w are all divisible by m then we get after dividing my m^2 that $p/m = (x/m)^2 + (y/m)^2 + (z/m)^2 + (w/m)^2$. But the RHS is an integer and the LHS is not, since $1 < m < p$, so that’s impossible.

So reduce $x, y, z, w \pmod{m}$ to get x', y', z', w' with absolute values less than or equal to $m/2$. We then have $x'^2 + y'^2 + z'^2 + w'^2 \equiv x^2 + y^2 + z^2 + w^2 \equiv 0 \pmod{m}$. Also $x'^2 + y'^2 + z'^2 + w'^2 \leq 4(m/2)^2 = m^2$. In fact we can assume that strict inequality holds, since if m is even and x', y', z', w' all have absolute value $m/2$, then they are all $\pm m/2$ and so are congruent mod m to $m/2$. Hence so are x, y, z, w, so in particular x, y, z, w are all even or all odd. Then we can replace x, y, z, w by $(x + y)/2, (x - y)/2, (z + w)/2, (z - w)/2$ and whose sum of squares is just $(x'^2 + y'^2 + z'^2 + w'^2)/2 = (m/2)p$ to reduce m. So now we can assume that $x'^2 + y'^2 + z'^2 + w'^2 = km$ with $0 < k < m$ and with $x \equiv x' \pmod{m}$ etc.

Then letting $u = x + yi + zj + wk$ and $v = x'i + y'i + z'j + w'k$ we have $N(u) = pm, N(v) = N(\overline{v}) = km$, so $N(u\overline{v}) = pkm^2$. But also $u\overline{v} \equiv v\overline{u} \pmod{m}$, hence the components of $u\overline{v}$ are all divisible by m. So we can divide out the representation as a sum of four squares $pkm^2 = N(u\overline{v})$ by m^2 to get $pk = \text{sum of four squares}$. This completes the descent step and shows we can achieve $m = 1$ ultimately, which implies p is a sum of four squares.

\textbf{Problem.} What’s the fastest algorithm you can think of for expressing a given integer as a sum of four squares?

\textbf{Remark.} If we start counting the number of representations of n as a sum of four squares, this leads us naturally to modular forms.

For example, define $r_4(n)$ by

$$(1 + 2q + 2q^4 + 2q^9 + \ldots)^4 = \sum r_4(n)q^n.$$

Then it’s easy to see that $r_4(n)$ is the number of representations of n as a sum of four integer squares (positive or negative).

Now \(\theta = (1 + 2q + 2q^4 + 2q^9 + \ldots)\) is the theta function of the integer lattice \(\mathbb{Z}\). If we plug in \(q = e^{2\pi iz}\) it becomes a function of a complex variable \(z\). Usually we let \(z \in \mathcal{H}\), the upper half complex plane \(\{x + iy \mid y > 0\}\).
So let \(\vartheta_4(z) = \sum r_4(n)e^{2\pi inz} \). Then \(\vartheta_4 \) is clearly unchanged under \(z \mapsto z + 1 \). But \(\vartheta_4 \) satisfies another transformation property:

\[
\vartheta_4 \left(-\frac{1}{z} \right) = -z^2 \vartheta_4(z).
\]

We won’t prove it here, but it follows by using the Poisson summation formula:

\[
\sum_{x \in \Lambda} f(x) = \frac{1}{\text{vol}(\Lambda)} \sum_{y \in \Lambda^*} \hat{f}(y)
\]

for any Schwarz function \(f \) on \(\mathbb{R}^n \) where \(\hat{f} \) is the Fourier transform, defined by

\[
\hat{f}(t) = \int_{\mathbb{R}^n} f(x)e^{2\pi itx}dx.
\]

These two transformation properties are enough to make \(\vartheta_4 \) into a modular form for the group \(SL_2(\mathbb{Z}) \) of weight 2. It lies in the finite dimensional space of modular forms of weight 2 for \(SL_2(\mathbb{Z}) \). We can arguments from the theory of modular forms to show, for instance, that

\[
r_4(n) = 8 \sum_{d|n,\,4\nmid d} d
\]

For an introduction to modular forms, see Serre’s “A course in arithmetic”.

Remark. A famous theorem of Hurwitz states that the only normed algebras over \(\mathbb{R} \) are \(\mathbb{R} \), the complex numbers \(\mathbb{C} \), the Hamiltonian quaternions \(\mathbb{H} \), and the octonions or Cayley numbers \(\mathbb{O} \). For the proof see Conway and Smith’s book “On quaternions and octonions” or the book “Numbers” by Eddinghaus. Hurwitz also showed that if \(K \) is a field of characteristic not equal to 2, then the only values of \(n \) for which there is an identity of the type

\[
(x_1^2 + \cdots + x_n^2)(y_1^2 + \cdots + y_n^2) = z_1^2 + \cdots + z_n^2
\]

where the \(z_k \) are bilinear functions of the \(x_i \) and the \(y_j \) with coefficients in \(K \) are \(n = 1, 2, 4, 8 \).

But surprisingly, in 1967, Pfister showed that there is such an expression if \(n \) is any power of 2 and we allow \(Z_k \) to be linear functions of the \(Y_j \) with coefficients in the rational function field \(K(X_1, \ldots, X_n) \). In particular, the product of a sum of \(n \) squares turns out to be a sum of \(n \) squares. Conversely, if \(n \) is not a power of 2, then there can be no such general identity with \(Z_k \in K(X_1, \ldots, X_n, Y_1, \ldots, Y_n) \). This is a consequence of Pfister’s beautiful theory of multiplicative forms.