Normality of Linear Continua

Theorem E.1. Every linear continuum X is normal in the order topology.

Proof. It suffices to consider the case where X has no largest element and no smallest element. For if X has a smallest x_0 but no largest, we can form a new ordered set Y by taking the disjoint union of $(C,1)$ and X, and declaring every element of $(0,1)$ to be less than every element of X. The ordered set Y is a linear continuum with no largest or smallest. Since X is a closed subspace of Y, normality of Y implies normality of X.

The other cases are similar.

So suppose X has no largest or smallest. We follow the outline of Exercise 8 of §32.

Step 1. Let C be a nonempty closed subset of X. We show that each component of $X - C$ has the form $(c, +\infty)$ or $(-\infty, c)$ or (c, c'), where c and c' are points of C.

Given a point x of $X - C$, let us take the union U of all open intervals (a_x, b_x) of X that contain x and lie in $X - C$. Then U is connected.

We show that U has one of the given forms, and that U is one of the components of $X - C$.

Let $a = \inf a_x$ or $a = -\infty$, according as the set $\{a_x\}$ has a lower bound or not. Let $b = \sup b_x$ or $b = +\infty$ according as the set $\{b_x\}$ has an upper bound or not. Then $U = (a, b)$. If $a \neq -\infty$, we show a is a point of C. Suppose that a is not a point of C. Then there is an open interval (d, e) about a disjoint from C. This open interval contains a_x for some x because $a = \inf a_x$; then the union $(d, e) \cup (a_x, b_x)$ is an open interval that contains x and lies in $X - C$. This contradicts the definition of a.

Similarly, if b is not $+\infty$, then b must be a point of C. We conclude that U is of one of the specified forms. [The form $(-\infty, +\infty)$ is not possible, since C is nonempty.]

It now follows that, because the end points of U are $\pm \infty$ or in C, no larger subset of $X - C$ can be connected. Thus U must be the component of $X - C$ that contains x.

Step 2. Let A and B be disjoint closed sets in X. For each component W of $X - A \cup B$ that is an open interval with one end point in A and the other in B, choose a point d_W in W. Let D be the set of all the points d_W. We show that D is closed and discrete.

We show that if x is a limit point of D, then x lies in both A and B (which is not possible). It follows that D has no limit points.

We suppose that x is not in A, and show that x is not a limit point of D. Let I be an open interval about x that is disjoint from A; we show that I contains at most two points of D. If I contains the point d_W of D, then I intersects the corresponding set W, which has one of the forms $W = (a, b)$ or $W = (b, a)$, where $a \in A$ and $b \in B$. Because I is disjoint from A, it can intersect at most one set of the form $W = (a,b)$ and at most one set of the form $W = (b,a)$.

Step 3. Let V be a component of $X - D$. We show that V cannot intersect both A and B.

Suppose V contains a point a of A and a point b of B; assume for convenience that $a < b$. Being connected, V must contain the interval $[a, b]$. Let a_0 be the supremum of the set $A \cap [a, b]$. Then a_0 lies in A and $a_0 < b$. The set $(a_0, b]$ does not intersect A. Let b_0 be the infimum of the set $B \cap [a_0, b]$. Then b_0 lies in B and $b_0 > a_0$. The interval (a_0, b_0) contains no point of $A \cup B$; because its end points lie in $A \cup B$, no larger subset of $X - A \cup B$ can be connected. Hence (a_0, b_0) is one of the components of $X - A \cup B$; as such, it contains a point of D. Hence V contains a point of D, contrary to construction.

Step 4. By Step 1, the components of $X - D$ are open sets of X. Let U_A be the union of all components of $X - D$ that intersect A, and let U_B be the union of all components of $X - D$ that intersect B. Then U_A and U_B are disjoint open sets containing A and B, respectively. □