15 CW-complexes II

We have a few more general things to say about CW complexes.

Suppose X is a CW complex, with skeleton filtration $\emptyset = X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots \subseteq X$ and cell structure

$$
\coprod_{\alpha \in A_n} S_{\alpha}^{n-1} \xrightarrow{f_n} X_{n-1},
\coprod_{\alpha \in A_n} D_{\alpha}^n \xrightarrow{g_n} X_n
$$

In each case, the boundary of a cell gets identified with part of the previous skeleton, but the "interior"

$$\text{Int} D^n = \{ x \in D^n : |x| < 1 \}$$

does not. (Note that $\text{Int} D^0 = D^0$.) Thus as sets – ignoring the topology –

$$X = \coprod_{n \geq 0} \coprod_{\alpha \in A_n} \text{Int}(D^n).$$

The subsets $\text{Int} D^n$ are called "open n-cells," despite the fact that they are not generally open in the topology on X, and (except when $n = 0$) they are not homeomorphic to compact disks.

Definition 15.1. Let X be a CW-complex with a cell structure $\{ g_{n} : D_{\alpha}^n \to X_n : \alpha \in A_n, n \geq 0 \}$. A subcomplex is a subspace $Y \subseteq X$ such that for all n, there is a subset B_n of A_n such that $Y_n = Y \cap X_n$ provides Y with a CW-structure with characteristic maps $\{ g_{\beta} : \beta \in B_n, n \geq 0 \}$.

Example 15.2. $\text{Sk}_n X \subseteq X$ is a subcomplex.

Proposition 15.3. Let X be a CW-complex with a chosen cell structure. Any compact subspace of X lies in some finite subcomplex.

Proof. See [2], p. 196.

Remark 15.4. For fixed cell structures, unions and intersections of subcomplexes are subcomplexes.

The n-sphere S^n (for $n > 0$) admits a very simple CW structure: Let $\ast = \text{Sk}_0 (S^n) = \text{Sk}_1 (S^n) = \cdots = \text{Sk}_{n-1} (S^n)$, and attach an n-cell using the unique map $S^{n-1} \to \ast$. This is a minimal CW structure – you need at least two cells to build S^n.

This is great – much simpler than the simplest construction of S^n as a simplicial complex – but it is not ideal for all applications. Here's another CW-structure on S^n. Regard $S^n \subseteq \mathbb{R}^{n+1}$, filter the Euclidean space by leading subspaces

$$\mathbb{R}^k = \langle e_1, \ldots, e_k \rangle.$$

and define

$$\text{Sk}_k S^n = S^n \cap \mathbb{R}^{k+1} = S^k.$$
Now there are two \(k \)-cells for each \(k \) with \(0 \leq k \leq n \), given by the two hemispheres of \(S^k \). For each \(k \) there are two characteristic maps,

\[u, \ell : D^k \to S^k \]

defining the upper and lower hemispheres:

\[u(x) = (x, \sqrt{1 - |x|^2}), \quad \ell(x) = (x, -\sqrt{1 - |x|^2}). \]

Note that if \(|x| = 1 \) then \(|u(x)| = |\ell(x)| = 1 \), so each characteristic map restricts on the boundary to a map to \(S^{k-1} \), and serves as an attaching map. This cell structure has the advantage that \(S^{n-1} \) is a subcomplex of \(S^n \).

The case \(n = \infty \) is allowed here. Then \(\mathbb{R}^\infty \) denotes the countably infinite dimensional inner product space that is the topological union of the leading subspaces \(\mathbb{R}^n \). The CW-complex \(S^\infty \) is of finite type but not finite dimensional. It has the following interesting property. We know that \(S^n \) is not contractible (because the identity map and a constant map have different behavior in homology), but:

Proposition 15.5. \(S^\infty \) is contractible.

Proof. This is an example of a “swindle,” making use of infinite dimensionality. Let \(T : \mathbb{R}^\infty \to \mathbb{R}^\infty \) send \((x_1, x_2, \ldots)\) to \((0, x_1, x_2, \ldots)\). This sends \(S^\infty \) to itself. The location of the leading nonzero entry is different for \(x \) and \(Tx \), so the line segment joining \(x \) to \(Tx \) doesn’t pass through the origin. Therefore

\[x \mapsto \frac{tx + (1-t)Tx}{|tx + (1-t)Tx|} \]

provides a homotopy \(1 \simeq T \). On the other hand, \(T \) is homotopic to the constant map with value \((1, 0, 0, \ldots)\), again by an affine homotopy. \(\square \)

This “inefficient” CW structure on \(S^n \) has a second advantage: it’s *equivariant* with respect to the antipodal involution. This provides us with a CW structure on the orbit space for this action.

Recall that \(\mathbb{R}P^k = S^k/\sim \) where \(x \sim -x \). The quotient map \(\pi : S^k \to \mathbb{R}P^k \) is a double cover, identifying upper and lower hemispheres. The inclusion of one sphere in the next is compatible with this equivalence relation, and gives us “linear” embeddings \(\mathbb{R}P^{k-1} \subseteq \mathbb{R}P^k \). This suggests that

\[\emptyset \subseteq \mathbb{R}P^0 \subseteq \mathbb{R}P^1 \subseteq \cdots \subseteq \mathbb{R}P^n \]
might serve as a CW filtration. Indeed, for each k,

$$\begin{array}{c}
S^{k-1} \xrightarrow{} D^k \\
\downarrow \pi \quad \downarrow u \\
\text{RP}^{k-1} \xrightarrow{} \text{RP}^k
\end{array}$$

is a pushout: A line in \mathbb{R}^{k+1} either lies in \mathbb{R}^k or is determined by a unique point in the upper hemisphere of S^k.
Bibliography

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.