16 Homology of CW-complexes

The skeleton filtration of a CW complex leads to a long exact sequence in homology, showing that the relative homology $H_q(X_k, X_{k-1})$ controls how the homology changes when you pass from X_{k-1} to X_k. What is this relative homology? If we pick a set of attaching maps, we get the following diagram.

\[
\begin{array}{ccc}
\coprod_{\alpha} S^{k-1}_{\alpha} & \xrightarrow{f} & \coprod_{\alpha} D^k_{\alpha} \\
\xrightarrow{f} & & \xrightarrow{f} \\
X_{k-1} & \xrightarrow{f} & X_k \cup_f B \xrightarrow{f} X_k/X_{k-1}
\end{array}
\]

where \bigvee is the wedge sum (disjoint union with all basepoints identified): $\bigvee_{\alpha} S^k_{\alpha}$ is a bouquet of spheres. The dotted map exists and is easily seen to be a homeomorphism.

Luckily, the inclusion $X_{k-1} \subseteq X_k$ satisfies what’s needed to conclude that

\[H_q(X_k, X_{k-1}) \rightarrow H_q(X_k/X_{k-1}, *) \]

is an isomorphism. After all, X_{k-1} is a deformation retract of the space you get from X_k by deleting the center of each k-cell.

We know $H_q(X_k/X_{k-1}, *)$ very well:

\[H_q(\bigvee_{\alpha \in A_k} S^k_{\alpha}, *) \cong \begin{cases}
\mathbb{Z}[A_k] & q = k \\
0 & q \neq k
\end{cases} \]

Lesson: The relative homology $H_k(X_k, X_{k-1})$ keeps track of the k-cells of X.

Definition 16.1. The group of *cellular n-chains* in a CW complex X is

\[C_k(X) := H_k(X_k, X_{k-1}) = \mathbb{Z}[A_k]. \]

If we put the fact that $H_q(X_k, X_{k-1}) = 0$ for $q \neq k, k+1$ into the homology long exact sequence of the pair, we find first that

\[H_q(X_{k-1}) \cong H_q(X_k) \quad \text{for} \quad q \neq k, k-1, \]

and then that there is a short exact sequence

\[0 \rightarrow H_k(X_k) \rightarrow C_k(X) \rightarrow H_{k-1}(X_{k-1}) \rightarrow 0. \]

So if we fix a dimension q, and watch how H_q varies as we move through the skelata of X, we find the following picture. Say $q > 0$. Since X_0 is discrete, $H_q(X_0) = 0$. Then $H_q(X_k)$ continues to
be 0 till you get up to \(X_q \). \(H_q(X_q) \) is a subgroup of the free abelian group \(C_q(X) \) and hence is free abelian. Relations may get introduced into it when we pass to \(X_{q+1} \); but thereafter all the maps

\[H_q(X_{q+1}) \to H_q(X_{q+2}) \to \cdots \]

are isomorphisms. All the \(q \)-dimensional homology of \(X \) is created on \(X_q \), and all the relations in \(H_q(X) \) occur by \(X_{q+1} \).

This stable value of \(H_q(X_k) \) maps isomorphically to \(H_q(X) \), even if \(X \) is infinite dimensional. This is because the union of the images of any finite set of singular simplices in \(X \) is compact and so lies in a finite subcomplex and in particular lies in a finite skeleton. So any chain in \(X \) is the image of a chain in some skeleton. Since \(H_q(X_k) \xrightarrow{\cong} H_q(X_{k+1}) \) for \(k > q \), we find that \(H_q(X_q) \to H_q(X) \) is surjective. Similarly, if \(c \in S_q(X_k) \) is a boundary in \(X \), then it’s a boundary in \(X_\ell \) for some \(\ell \geq k \). This shows that the map \(H_q(X_{q+1}) \to H_q(X) \) is injective. We summarize:

Proposition 16.2. Let \(k, q \geq 0 \). Then

\[H_q(X_k) = 0 \quad \text{for } k < q \]

and

\[H_q(X_k) \xrightarrow{\cong} H_q(X) \quad \text{for } k > q. \]

In particular, \(H_q(X) = 0 \) if \(q \) exceeds the dimension of \(X \).

We have defined the cellular \(n \)-chains of a CW complex \(X \),

\[C_n(X) = H_n(X_n, X_{n-1}), \]

and found that it is the free abelian group on the set of \(n \) cells. We claim that these abelian groups are related to each other; they form the groups in a chain complex.

What should the boundary of an \(n \)-cell be? It’s represented by a characteristic map \(D^n \to X_n \) whose boundary is the attaching map \(\alpha : S^{n-1} \to X_{n-1} \). This is a lot of information, and hard to interpret because \(X_{n-1} \) is itself potentially a complicated space. But things get much simpler if I pinch out \(X_{n-2} \). This suggests defining

\[d : C_n(X) = H_n(X_n, X_{n-1}) \xrightarrow{\partial_n} H_{n-1}(X_n) \to H_{n-1}(X_{n-1}, X_{n-2}) = C_{n-1}(X). \]

The fact that \(d^2 = 0 \) is embedded in the following large diagram, in which the two columns and the central row are exact.

\[
\begin{array}{ccccccc}
C_{n+1}(X) = H_{n+1}(X_{n+1}, X_n) & \\
\downarrow \partial_{n+1} & & \downarrow d & & 0 = H_{n-1}(X_{n-2}) \\
H_n(X_n) & \xrightarrow{\partial_n} & C_n(X) = H_n(X_n, X_{n-1}) & \xrightarrow{\partial_{n-1}} & H_{n-1}(X_{n-1}) & \\
\downarrow j_n & & \downarrow d & & \downarrow j_{n-1} & \\
H_n(X_{n+1}) & & C_{n-1}(X) = H_{n-1}(X_{n-1}, X_{n-2}) & & \\
\downarrow & & \downarrow & & & \downarrow \\
0 = H_n(X_{n+1}, X_n) & & & & & \\
\end{array}
\]

Now, \(\partial_{n-1} \circ j_n = 0 \). So the composite of the diagonals is zero, i.e., \(d^2 = 0 \), and we have a chain complex! This is the “cellular chain complex” of \(X \).
We should compute the homology of this chain complex, $H_n(C_\ast(X)) = \ker d / \im d$. Now

$$\ker d = \ker(j_{n-1} \circ \partial_{n-1}).$$

But j_{n-1} is injective, so

$$\ker d = \ker \partial_{n-1} = \im j_n = H_n(X_n).$$

On the other hand

$$\im d = j_n(\im \partial_n) = \im \partial_n \subseteq H_n(X_n).$$

So

$$H_n(C_\ast(X)) = H_n(X_n)/\im \partial_n = H_n(X_{n+1})$$

by exactness of the left column; but as we know this is exactly $H_n(X)$! We have proven the following result.

Theorem 16.3. For a CW complex X, there is an isomorphism

$$H_\ast(C_\ast(X)) \cong H_\ast(X)$$

natural with respect to filtration-preserving maps between CW complexes.

This has an immediate and surprisingly useful corollary.

Corollary 16.4. Suppose that the CW complex X has only even cells – that is, $X_{2k} \hookrightarrow X_{2k+1}$ is an isomorphism for all k. Then

$$H_\ast(X) \cong C_\ast(X).$$

That is, $H_n(X) = 0$ for n odd, is free abelian for all n, and the rank of $H_n(X)$ for n even is the number of n-cells.

Example 16.5. Complex projective space $\mathbb{C}P^n$ has a CW structure in which

$$\Sigma_{2k} \mathbb{C}P^n = \Sigma_{2k+1} \mathbb{C}P^n = \mathbb{C}P^k.$$

The attaching $S^{2k-1} \to \mathbb{C}P^k$ sends $v \in S^{2k-1} \subseteq \mathbb{C}^n$ to the complex line through v. So

$$H_k(\mathbb{C}P^n) = \begin{cases} \mathbb{Z} & \text{for } 0 \leq k \leq 2n, k \text{ even} \\ 0 & \text{otherwise} \end{cases}.$$

Finally, notice that in our proof of Theorem 16.3 we used only properties contained in the Eilenberg-Steenrod axioms. As a result, any construction of a homology theory satisfying the Eilenberg-Steenrod axioms gives you the same values on CW complexes as singular homology.