Due to President’s day, I believe this Monday’s class is rescheduled to Tuesday.

1. Verify the following isomorphisms:
 (a) For $X \in \text{Top}_*$, show that there is an isomorphism
 \[\pi_{n-1}(\Omega X) \cong \pi_n(X). \]
 (b) Let X be an unbased space. The unreduced suspension $\text{Susp}(X)$ is the space obtained from $X \times I$ by identifying all of the points in $X \times \{0\}$ and all of the points in $X \times \{1\}$. We do not identify points in $X \times \{0\}$ with points in $X \times \{1\}$. Show that there is an isomorphism
 \[H_{n+1}(\text{Susp}X) \cong H_n(X) \]
 for n greater than or equal to 1.

2. Hopf fibration. The purpose of this problem is to verify that there exists a non-trivial element of $\pi_3(S^2)$. The Hopf fibration is a map $\eta : S^3 \to S^2$. It is defined by viewing S^2 as $\mathbb{C}P^1$, and S^3 as the unit sphere in \mathbb{C}^2. The map η is then defined by
 \[\eta(x, y) = [x : y]. \]
 (Here, $[x : y]$ denotes the complex line in \mathbb{C}^2 spanned by the vector (x, y).)
 (a) Let X be the CW complex given by attaching a 4-disk along η.
 \[
 \begin{array}{c}
 S^3 \\
 \eta \\
 \Downarrow \\
 \mathbb{C}P^1 \\
 \Rightarrow \\
 D^4 \\
 \Rightarrow \\
 X.
 \end{array}
 \]
 Show that X is homeomorphic to $\mathbb{C}P^2$.
 (b) Show that if η is null homotopic, then X is homotopy equivalent to $S^2 \vee S^4$.
 (c) Deduce that η cannot be null homotopic by computing the cup product structure on $H^*(X)$.

3. Problem 3 on p358 of Hatcher.
4. Problem 1 on p79 of May.