LECTURE 31: COMPLETION OF A DEFERRED PROOF,
WHITNEY SUM, AND CHERN CLASSES

1. A DEFERRED PROOF

From the last lecture, I constructed for a sub-Lie group H of a Lie group G a map
\[\phi: EG/H \to BH, \]
and owed you a proof of

Proposition 1.1. The map ϕ is an equivalence, and the map induced by the inclusion
\[i: H \hookrightarrow G \]
is the quotient map
\[i_*: BH \simeq EG/H \to EG/G = BG. \]

We first state some easy lemmas.

Lemma 1.2. The induction functor
\[\text{Ind}_H^G = G \times_H (-): H\text{-spaces} \to G\text{-spaces} \]
is left adjoint to the restriction functor
\[\text{Res}_H^G: G\text{-spaces} \to H\text{-spaces} \]
which regards a G-space X as an H-space. In particular, there is a natural isomorphism
\[\text{Map}_G(G \times_H X, Y) \cong \text{Map}_H(X, Y) \]
for an H-space X and a G-space Y.

Given G-bundles $E \to B$ and $E' \to B'$, a G-equivariant map
\[f: E \to E' \]
gives rise to a map of bundles
\[E \xrightarrow{f} E' \]
\[B \xrightarrow{i/G} B' \]

Lemma 1.3. There is an equivalence of bundles
\[E \cong (f/G)^* E'. \]
Sketch proof of Proposition 1.1. We need to construct a map in the opposite direction. The G-bundle $G \times_H EH \to BH$ is classified by a map

$$G \times_H EH \xrightarrow{f} EG$$

$$BH \xrightarrow{} BG.$$

Let

$$\tilde{f} : EH \to EG$$

be the H-equivariant map adjoint to the map f. Let ψ be the induced map of H-orbits:

$$\psi = \tilde{f}/H : BH = EH/H \to EG/H.$$

The composite $\phi \circ \psi$ is seen to be an equivalence because it is covered by the H-equivariant composite

$$EH \xrightarrow{\tilde{f}} EG \to EH$$

and thus classifies the universal bundle over BH.

The composite $\psi \circ \phi$ is covered by the H-equivariant composite

$$\tilde{h} : EG \to EH \xrightarrow{\tilde{f}} EG$$

whose adjoint h gives a map of G-bundles

$$G \times_H EG \xrightarrow{h} EG$$

$$EG/H \xrightarrow{\tilde{h}} BG$$

The bundle $G \times_H EG \to EG/H$ is easily seen to be classified by the quotient map $EG/H \to EG/G = BG$. Thus we can conclude that h is G-equivariantly homotopic to the map

$$G \times_H EG \to EG$$

which sends $[g, e]$ to ge. Thus the adjoint \tilde{h} is H-equivariantly homotopic to the identity map $EG \to EG$. Taking H-orbits, we see that $\psi \circ \phi$ is homotopic to the identity.

\[\square\]

2. Whitney sum

Let V be an n-dimensional complex vector bundle over X and W be an m-dimensional complex vector bundle over Y.

Definition 2.1. The external direct sum $V \boxplus W$ is the product bundle

$$V \boxplus W = V \times W \to X \times Y$$

where the vector space structure on the fibers is given by the direct sum.

Now assume $X = Y$. 2
Definition 2.2. The Whitney sum $V \oplus W$ is the $n+m$-dimensional complex vector bundle given by the pullback $\Delta^* V \boxplus W$, where

$$\Delta : X \rightarrow X \times X$$

is the diagonal.

Let V_{univ}^n be the universal n-dimensional complex vector bundle over $BU(n)$. Let

$$f_{n,m} : BU(n) \times BU(m) \rightarrow BU(n+m)$$

be the classifying map of $V_{\text{univ}}^n \boxplus V_{\text{univ}}^m$. Then if

$$f_V : X \rightarrow BU(n)$$
$$f_W : X \rightarrow BU(m)$$

classify V and W, respectively, the composite

$$X \xrightarrow{f_V \times f_W} BU(n) \times BU(m) \xrightarrow{f_{n,m}} BU(n+m)$$

classifies $V \oplus W$.

3. **Chern classes**

Our computation of $H^*(BU(n))$ allows for the definition of characteristic classes for complex vector bundles.

Definition 3.1. Let $V \rightarrow X$ be a complex n-dimensional vector bundle, with classifying map

$$f_V : X \rightarrow BU(n).$$

We define the ith Chern class $c_i(V) \in H^{2i}(X; \mathbb{Z})$ to be the induced class $f_V^*(c_i)$ for $1 \leq i \leq n$. We use the following conventions:

$$c_0(V) := 1$$
$$c_i(V) := 0 \quad \text{for} \ i > n.$$

These classes are natural: for a map $f : Y \rightarrow X$ we have

$$c_i(f^*V) = f^*c_i(V).$$