18.917 Topics in Algebraic Topology: The Sullivan Conjecture
Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Steenrod Operations (Lecture 2)

The objective of today’s lecture is to introduce the Steenrod operations and establish some of their basic properties. We will work over the finite field $\mathbb{F}_2 \simeq \mathbb{Z}/2\mathbb{Z}$ with two elements.

To this end, we will study the homotopy theory of cochain complexes

$$\ldots \rightarrow V^{n-1} \xrightarrow{d_{n-1}} V^n \xrightarrow{d_n} V^{n+1} \rightarrow \ldots$$

in the category of \mathbb{F}_2-vector spaces. We will refer to these objects simply as complexes. To each complex V we can associate cohomology groups

$$H^n V = \ker(d_n)/\text{Im}(d_{n-1}).$$

Remark 1. It is possible to take a more sophisticated point of view: we can identify cochain complexes V over the field \mathbb{F}_2 with module spectra over \mathbb{F}_2. The cohomology groups $H^n(V)$ should then be viewed as the homotopy groups π_n of the corresponding spectra.

Given a pair of \mathbb{F}_2-module spectra V and W, we can form their tensor product $V \otimes W$. This is given by the usual tensor product of complexes of vector spaces:

$$(V \otimes W)^n = \oplus_{n=n'+n''} V^{n'} \otimes W^{n''},$$

with the usual differential (note that, since we are working over the field \mathbb{F}_2, we do not even have to worry about signs). In particular, we can form the tensor powers

$$V^\otimes n = V \otimes V \otimes \ldots \otimes V$$

of a fixed \mathbb{F}_2-module spectrum. The tensor power $V^\otimes n$ inherits a natural action of the symmetric group Σ_n, by permuting the tensor factors.

One of the most important examples of an \mathbb{F}_2-module spectrum is the cochain complex

$$C^*(X; \mathbb{F}_2)$$

of a topological space X. The cohomology groups of this \mathbb{F}_2-module spectrum are simply the cohomology groups of X. The cohomology $H^*(X; \mathbb{F}_2)$ has the structure of a graded commutative ring. The multiplication on $H^*(X; \mathbb{F}_2)$ arises from a multiplication which exists on the cochain complex $C^*(X; \mathbb{F}_2)$. Namely, we can consider the composition

$$C^*(X; \mathbb{F}_2) \otimes C^*(X; \mathbb{F}_2) \rightarrow C^*(X \times X; \mathbb{F}_2) \rightarrow C^*(X; \mathbb{F}_2).$$

Here the first map is the classical Alexander-Whitney morphism, and the second is given by pullback along the diagonal inclusion $X \rightarrow X \times X$. The Alexander-Whitney map is *not* compatible with the action of the symmetric group Σ_2 on the two sides. Consequently, the resulting multiplication

$$m : C^*(X; \mathbb{F}_2) \otimes C^*(X; \mathbb{F}_2) \rightarrow C^*(X; \mathbb{F}_2)$$
is not commutative until passing to homotopy. The failure of \(m \) to be strictly commutative turns out to be a very interesting phenomenon, which is responsible for the existence of Steenrod operations.

In the above situation, the multiplication \(m \) is not commutative. However, it does induce a commutative multiplication after passing to cohomology. In fact, more is true: the map \(m \) satisfies a symmetry condition up to coherent homotopy. The following definitions allow us to make this idea precise:

Definition 2. Let \(V \) be an \(F_2 \)-module spectrum and \(n \geq 0 \) a nonnegative integer. The \(n \)th extended power of \(V \) is given by the homotopy coinvariants
\[
V^{\otimes n}_{h\Sigma_n}.
\]
This is a complex which we will denote by \(D_n(V) \).

Remark 3. In concrete terms, \(D_n(V) \) may be computed in the following way. Let \(M \) denote the vector space \(F_2 \), with the trivial action of \(\Sigma_n \). Choose a resolution
\[
\ldots \rightarrow P^{-1} \rightarrow P^0 \rightarrow M
\]
by free \(F_2[\Sigma_n] \)-modules. We let \(E\Sigma_n \) denote the complex \(P^* \). (We can think of \(E\Sigma_n \) as a contractible complex with a free action of \(\Sigma_n \).) The extended power \(D_n(V) \) of a complex \(V \) can then be identified with the ordinary coinvariants
\[
(V^{\otimes n} \otimes E\Sigma_n)_{\Sigma_n}.
\]

Definition 4. Let \(V \) be a complex. A symmetric multiplication on \(V \) is a map
\[
D_2(V) \rightarrow V.
\]

Example 5. If \(X \) is any topological space, then the cochain complex \(C^*(X; F_2) \) can be endowed with a symmetric multiplication. If \(X \) is equipped with a base point \(* \), then the reduced cochain complex \(C^*(X, *; F_2) \) also inherits a symmetric multiplication.

Example 6. Let \(X \) be an infinite loop space. Then the chain complex \(C_*(X; F_2) \) can be endowed with a symmetric multiplication.

Examples 5 and 6 are really special cases of the following:

Example 7. Let \(A \) be an \(E_\infty \)-algebra over the field \(F_2 \). Then \(A \) has an underlying \(F_2 \)-module spectrum, which is equipped with a symmetric multiplication.

Our goal in this lecture is to study the consequences of the existence of a symmetric multiplication on a complex \(V \).

Notation 8. Let \(n \) be an integer. We let \(F_2[-n] \) denote the complex which consists of a 1-dimensional vector space in cohomological degree \(n \), and zero elsewhere. Let \(e_n \) denote a generator for the \(F_2 \)-vector space \(H^n F_2[-n] \), so we have isomorphisms
\[
H^k F_2[-n] \cong \begin{cases} F_2 e_n & \text{if } k = n \\ 0 & \text{otherwise}. \end{cases}
\]

Our first goal is to describe the extended squares of complexes of the form \(F_2[-n] \). This is easy: we observe that \(F_2[-n]^{\otimes 2} \) is isomorphic to \(F_2[-2n] \), with the symmetric group \(\Sigma_2 \) acting trivially (since we are working in characteristic 2, there are no signs to worry about). Consequently, we can identify \(D_2(F_2[-n]) \) with the tensor product
\[
F_2[-2n] \otimes (E\Sigma_2)_{\Sigma_2}.
\]
The second tensor factor can be identified with the chain complex of the space \(B\Sigma_2 \simeq RP^\infty \). Consequently, we get canonical isomorphisms
\[
H^k(D_2(F_2[-n])) \cong H_{2n-k}(B\Sigma_2; F_2)e_{2n}.
\]
We now recall the structure of the homology and cohomology of the space $B\Sigma_2 \simeq \mathbb{R}P^\infty$. There is a (unique) isomorphism
\[H^*(\mathbb{R}P^\infty; \mathbb{F}_2) \simeq \mathbb{F}_2[t], \]
where the polynomial generator t lies in $H^1(\mathbb{R}P^\infty; \mathbb{F}_2)$. We have a dual description of the homology $H_*(\mathbb{R}P^\infty; \mathbb{F}_2)$: this is just a one-dimensional vector space in each degree m, with a unique generator which we will denote by x_m.

Definition 9. Let V be a complex, and let $v \in H^n V$, so that v determines a homotopy class of maps
\[\eta : \mathbb{F}_2[-n] \to V. \]
For $i \leq n$, we let
\[Sq^i(v) \in H^{n+i} D_2(V) \]
denote the image of
\[x_{n-i} \otimes e_{2n} \in H_{n-i}(\mathbb{R}P^\infty; \mathbb{F}_2) e_{2n} \simeq H^{n+i} D_2(\mathbb{F}_2[n]) \]
under the induced map
\[D_2(\mathbb{F}_2[-n]) \xrightarrow{D_2(\eta)} D_2(V). \]
By convention, we will agree that $Sq^i(v) = 0$ for $i > n$.

If V is equipped with a symmetric multiplication $D_2(V) \to V$, we let $Sq^i(v)$ denote the image of $Sq^i(v)$ under the induced map
\[H^{n+i} D_2(V) \to H^{n+i} V. \]

The operations $Sq^i : H^* V \to H^{*+i} V$ are called the Steenrod operations, or Steenrod squares.

Example 10. Let V be an \mathbb{F}_2-module spectrum equipped with a symmetric multiplication, and let $v \in H^n V$. Then $Sq^n(v) \in H^{2n} V$ is simply the image of $v \otimes v$ under the composite map
\[V \otimes V \to D_2(V) \to V. \]
In other words, Sq^n acts on $H^n V$ by simply “squaring” the elements with respect to the multiplication on V. This is why the operations Sq^i are called “Steenrod squares”.

Example 11. Let X be a topological space, and let $V = C^*(X; \mathbb{F}_2)$ be the cochain complex of X, equipped with its usual symmetric multiplication. Then Definition 9 yields operations
\[Sq^i : H^n(X; \mathbb{F}_2) \to H^{n+i}(X; \mathbb{F}_2). \]
These are the usual Steenrod operations.

Remark 12. The operations $v \mapsto \overline{Sq}^i v$ completely account for the cohomology groups of any extended square $D_2(V)$. More precisely, let us suppose that V is an \mathbb{F}_2-module spectrum, and that $\{v_i\}_{i \in I}$ is an ordered basis for $\pi_*(V)$, where $v_i \in H^{n_i} V$. Then the collection
\[\{v_i v_j\}_{i < j} \cup \{Sq^n v_i\}_{n \leq n_i}, \]
is a basis for $\pi_* D_2(V)$. The proof of this is easy. Using the fact that D_2 commutes with filtered colimits, we can reduce to the case where only finitely many generators are involved. We then work by induction, using the formula
\[D_2(V \oplus W) \simeq (V \oplus W)^{\otimes 2}_{h\Sigma_2} \simeq V^{\otimes 2}_{h\Sigma_2} \oplus (V \otimes W) \oplus W^{\otimes 2}_{h\Sigma_2} \]
to reduce to the case of a single basis vector. The result is then obvious.
Proposition 13. The Steenrod squares are additive operations. Let V be a complex, and let $v, v' \in H^n V$. Then, for each integer k, we have

$$\overline{\text{Sq}}^k (v + v') = \overline{\text{Sq}}^k (v) + \overline{\text{Sq}}^k (v') \in H^{n+k} D_2(V).$$

In particular, if V is equipped with a symmetric multiplication, we have

$$\text{Sq}^k (v + v') = \text{Sq}^k (v) + \text{Sq}^k (v') \in H^{n+k} V.$$

Proof. If $k > n$, then both sides are zero and there is nothing to prove. If $k = n$, then

$$\overline{\text{Sq}}^k (v + v') = (v + v')^2 = \overline{\text{Sq}}^k (v) + \overline{\text{Sq}}^k (v') + (vv' + v'v).$$

Since the multiplication map

$$V \otimes V \to D_2(V)$$

is commutative on the level of homotopy, we have $vv' + v'v = 2vv' = 0$.

Now suppose that $k < n$. By functoriality, it will suffice to treat the universal case where $V \simeq F[-n] \oplus F[-n]$. Using Remark 12, we observe that the canonical map

$$H^m D_2(V) \to H^m D_2(F_2[-n]) \times H^m D_2(F_2[-n])$$

is injective for $m < 2n$. We may therefore reduce to the case where either v or v' vanishes, in which case the result is obvious. \qed