A Pushout Square (Lecture 22)

In the last lecture we saw that the cohomology $H^* \mathcal{F}(n)$ of the free E_∞-algebra on one generator was itself freely generated by one element, as an unstable algebra over the big Steenrod algebra A^{Big}. The Cartan-Serre theorem implies that the cohomology ring $H^* K(\mathbb{F}_2, n)$ is the free unstable A-module on one generator, in the same degree. This suggests a close relationship between $H^* \mathcal{F}(n)$ and $H^* K(\mathbb{F}_2, n)$. In fact, we can say more: there is a close relationship between the E_∞-algebras $\mathcal{F}(n)$ and $C^* K(\mathbb{F}_2, n)$ for each $n \geq 0$.

To make this precise, we begin by observing that the canonical element $\nu \in H^n K(\mathbb{F}_2, n)$ gives rise to a map of E_∞-algebras

$$f : \mathcal{F}(n) \to C^* K(\mathbb{F}_2, n).$$

Let μ denote the canonical generator of $H^* \mathcal{F}(n)$, so that f carries μ to ν.

The map f is certainly not a homotopy equivalence. The target $H^* K(\mathbb{F}_2, n)$ is a module over the usual Steenrod algebra A, so that Sq^0 acts by the identity on $H^* K(\mathbb{F}_2, n)$. However, Sq^0 does not act by the identity on the cohomology of the left hand side. We therefore have

$$f(\mu - Sq^0 \mu) = f(\mu) - Sq^0 f(\mu) = \nu - Sq^0 \nu = 0,$$

so that f fails to be injective on cohomology.

However, this turns out to be the only obstruction to f being a homotopy equivalence. To make this precise, we observe that there is map $g : \mathcal{F}(n) \to \mathcal{F}(n)$, which is determined up to homotopy by the requirement that $g(\mu) = \mu - Sq^0 \mu \in H^n \mathcal{F}(n)$. The above calculation shows that $f \circ g$ carries μ to zero in $H^n K(\mathbb{F}_2, n)$. We therefore obtain a (homotopy) commutative diagram of E_∞-algebras

$$\begin{array}{ccc}
\mathcal{F}(n) & \xrightarrow{g} & \mathcal{F}(n) \\
\downarrow & & \downarrow f \\
\mathbb{F}_2 & \xrightarrow{f} & C^* K(\mathbb{F}_2, n).
\end{array}$$

Our goal in this lecture is to prove:

Theorem 1. The above diagram is a homotopy pushout square in the category of E_∞-algebras over \mathbb{F}_2.

In other words, the cochain complex $C^* K(\mathbb{F}_2, n)$ has a very simple presentation as an E_∞-algebra over \mathbb{F}_2. It is “generated” by the tautological class $\nu \in H^n K(\mathbb{F}_2, n)$, and subject only to the “relation” that ν is fixed by Sq^0.

To prove Theorem 1, we need to understand homotopy pushouts in the world of E_∞-algebras. We first recall the situation for ordinary commutative rings. Given a pair of commutative ring homomorphisms

$$A \leftarrow R \to B,$$

the pushout $A \bigsqcup_R B$ in the category of commutative rings is given by the relative tensor product $A \otimes_R B$. In the case of E_∞-algebras, the situation is more or less identical. More precisely:
• Given an E_∞-algebra R, there is a good theory of R-modules (or R-module spectra).
• Given any map $R \to A$ of E_∞-algebras, we can regard A as an R-module.
• Given an E_∞-ring R, the collection of R-module spectra is endowed with a tensor product operation $(M, N) \mapsto M \otimes_R N$. (More traditionally, this is denoted by $M \wedge_R N$ and called the smash product over R).
• Given a pair of E_∞-algebra maps

\[A \leftarrow R \to B, \]

the homotopy pushout of A and B over R in the setting of E_∞-rings is again an R-algebra, and the underlying R-module is given by the tensor product $A \otimes_R B$.

Given these facts, we can restate Theorem 1. We have a canonical map

\[\mathcal{F}(n) \otimes_{\mathcal{F}(n)} F_2 \to C^*K(F_2, n), \]

and we wish to show that this map is a homotopy equivalence. In other words, we wish to show that it induces an isomorphism after passing to cohomology. The cohomology of the right side is given by the Cartan-Serre theorem: $H^* K(F_2, n)$ can be identified with the polynomial ring on generators $\{Sq^i \nu\}$, where i ranges over admissible positive sequences of excess $< n$. It therefore remains to compute the cohomology of the left hand side.

The calculation will be based on the following lemma:

Lemma 2. Let R be an E_∞-algebra over F_2, and let M and N be R-modules. Then $H^* M$ and $H^* N$ are modules over the cohomology ring $H^* R$. Suppose that $H^* M$ is free as a graded $H^* R$-module. Then the canonical map

\[H^* M \otimes_{H^* R} H^* N \to H^*(M \otimes_R N) \]

is an isomorphism.

Proof. Choose elements $\{x_i \in H^n M\}$ which freely generate $H^* M$ as an $H^* R$-module. Each x_i determines a map of R-modules $R[-n_i] \to M$. Adding these together, we obtain a map $\oplus R[-n_i] \to M$. By assumption this map induces an isomorphism on cohomology, and is therefore a homotopy equivalence. Thus, M is a direct sum of free R-modules (in various degrees).

Let us say that an R-module M is **good** if the canonical map

\[H^* M \otimes_{H^* R} H^* N \to H^*(M \otimes_R N) \]

is an isomorphism. Both the left hand side and the right hand side above are functors of M, which commute with shifting and with the formation of direct sums. Therefore, to show that $\oplus R[-n_i]$ is good, it will suffice to show that R is good. But this is clear, since

\[H^* R \otimes_{H^* R} H^* N \simeq H^* N \simeq H^*(R \otimes_R N). \]

\[\square \]

To prove Theorem 1, we will show that Lemma 2 applies: namely, that $H^* \mathcal{F}(n)$ is free when regarded as an $H^* \mathcal{F}(n)$-module via the map g. It then follows that we have an isomorphism

\[H^*(\mathcal{F}(n) \otimes_{\mathcal{F}(n)} F_2) \simeq H^* \mathcal{F}(n) \otimes_{H^* \mathcal{F}(n)} F_2 = H^* \mathcal{F}(n)/I, \]

where I is the ideal of $H^* \mathcal{F}(n)$ generated by the elements $g(x)$, where $x \in H^* \mathcal{F}(n)$ has positive degree.

In the last lecture, we proved that $H^* \mathcal{F}(n)$ is isomorphic to the free unstable A_{Alg}-module $F_{\text{Alg}}(n)$. It is therefore isomorphic to a polynomial ring on generators $\{Sq^i \mu\}$, where I ranges over admissible sequences of excess $< n$. For every such sequence I, we let $X_I = g(Sq^i \mu) = Sq^i \mu - Sq^i Sq^0 \mu \in H^* \mathcal{F}(n)$. To complete the proof of Theorem 1, it will suffice to verify the following:
Proposition 3. The cohomology ring $H^* \mathcal{F}(n)$ is a polynomial ring on generators $\{X_I\}_{I \text{admissible of excess } < n}$ and $\{\text{Sq}^I \mu\}_{I \text{admissible and positive of excess } < n}$.

Proof. Let \mathcal{J} denote the collection of all admissible sequences of integers of excess $< n$. We have a decomposition $\mathcal{J} = \mathcal{J}' \coprod \mathcal{J}''$, where \mathcal{J}' consists of those sequences (i_1, \ldots, i_k) such that $k > 0$ and $i_k < 0$. The complement \mathcal{J}'' has a further decomposition

$$\mathcal{J}'' = \mathcal{J}''(0) \coprod \mathcal{J}''(1) \coprod \cdots$$

where $\mathcal{J}''(m)$ consists of those sequence (i_1, \ldots, i_k) which end with precisely k zeroes. For each $I \in \mathcal{J}''(k)$, let $I^+ = \mathcal{J}''(k + 1)$ be the result of appending a zero to the sequence I. We have a decomposition

$$H^* \mathcal{F}(n) \simeq F_2[\text{Sq}^I \mu]_{I \in \mathcal{J}'} \otimes F_2[\text{Sq}^I \mu]_{I \in \mathcal{J}''}.$$

To complete the proof, it will suffice to show:

1. The polynomial ring $F_2[\text{Sq}^I \mu]_{I \in \mathcal{J}'}$ is also polynomial on the generators $\{X_I\}_{I \in \mathcal{J}'}$.

2. The polynomial ring $F_2[\text{Sq}^I \mu]_{I \in \mathcal{J}''}$ is also polynomial on the generators $\{X_I\}_{I \in \mathcal{J}''}$ and $\{\text{Sq}^I \mu\}_{I \in \mathcal{J}''(0)}$.

Assertion (2) follows immediately from the observation that $X_I = \text{Sq}^I \mu - \text{Sq}^{I^+} \mu$ for $I \in \mathcal{J}''$. We can divide the proof of (1) further into three steps:

1a) The map $\theta : F_2[X_I]_{I \in \mathcal{J}'} \to F_2[\text{Sq}^I \mu]_{I \in \mathcal{J}'}$ is well-defined. In other words, if $I \in \mathcal{J}'$, then X_I belongs to $F_2[\text{Sq}^I \mu]_{I \in \mathcal{J}'}$.

1b) The map θ is injective.

1c) The map θ is surjective.

Assertion (1a) is an immediate consequence of the following:

Lemma 4. Let $I = (i_m, \ldots, i_1)$ be a sequence of integers with $i_1 < 0$. Then in A^{Bp} we have an equality

$$\text{Sq}^I \text{Sq}^0 = \sum_{\alpha} \text{Sq}^{J_\alpha}$$

where each J_α is an admissible sequence of the form (j_m, \ldots, j_0), where $j_0 < 0$.

Proof. We first apply the Adem relations to write

$$\text{Sq}^I \text{Sq}^0 = \sum_k (2k - i_1, -k - 1) \text{Sq}^k \text{Sq}^{i_1 - k}.$$

The coefficient $(2k - i_1, -k - 1)$ vanishes unless

$$\frac{i_1}{2} \leq k < 0.$$

We may therefore restrict our attention to those integers k for which $i_1 - k < \frac{i_1}{2} < 0$, so the sequence $I'(k) = (i_m, \ldots, i_2, k, i_1 - k)$ ends with a negative integer.

Each $I'(k)$ can be rewritten as a sum of admissible monomials using the Adem relations. Let us analyze this process. Given a sequence $J = (j_m, \ldots, a, b, \ldots, j_0)$ with $a < 2b$, we have

$$\text{Sq}^J = \sum_k (2k - a, b - k - 1) \text{Sq}^{j_k},$$

where J_k is obtained from J by replacing a by $b + k$ and b by $a - k$. The coefficient $(2k - a, b - k - 1)$ vanishes unless $\frac{a}{2} \leq k < b$; in particular, we always have $a - k < \frac{a}{2} < b$. Thus, if the final entry in J is negative, the final entry in J_k will be negative. \qed
We now prove (1b). Recall that the cohomology ring $H^* \mathcal{F}(n) \simeq F_2[Sq^l \mu]_{l \in \mathbb{Z}}$ has a natural grading by rank, where $Sq^l \mu$ has rank 2^k for every sequence $I = (i_1, \ldots, i_k)$. This grading restricts to a grading on $F_2[Sq^l \mu]_{l \in \mathbb{Z}}$. We have an analogous grading on $F_2[X_I]_{l \in \mathbb{Z}}$, where we declare $\text{rk}(X_I) = 2^k$ if $I = (i_1, \ldots, i_k)$.

The map $\theta : F_2[X_I]_{l \in \mathbb{Z}} \rightarrow F_2[Sq^l \mu]_{l \in \mathbb{Z}}$ is not compatible with the gradings by rank. Instead we have

$$\theta(X_I) = Sq^l \mu - Sq^l Sq^0 \mu = Sq^l \mu + \text{higher rank}.$$

We have an evident isomorphism $\theta' : F_2[X_I]_{l \in \mathbb{Z}} \rightarrow F_2[Sq^l \mu]_{l \in \mathbb{Z}}$, given by $X_I \mapsto Sq^l \mu$. Let $x \in F_2[X_I]_{l \in \mathbb{Z}}$ be a nonzero element, and write x as a sum $x = x_{k_0} + x_{k_1} + \ldots + x_{k_m}$ of homogeneous elements of ranks $k_0 < k_1 < \ldots < k_m$. Then we have

$$\theta(x) = \theta'(x) + \text{terms of rank } \leq k.$$

In particular, $\theta(x) = 0$ implies $\theta'(x_{k_0}) = 0$. Since θ' is an isomorphism, we get $x_{k_0} = 0$, a contradiction. This completes the proof that θ is injective.

We now prove that θ is surjective. This is an immediate consequence of the following statement:

Lemma 5. Let $I = (i_k, \ldots, i_1)$ be a sequence of integers with $i_1 < 0$ (not necessarily admissible). Then $Sq^l \mu$ lies in the image of θ.

Proof. We use descending induction on i_1. Observe that

$$Sq^l \mu = (Sq^l \mu - Sq^l Sq^0 \mu) + (Sq^l Sq^0 \mu) = \theta(X_I) + Sq^l Sq^0 \mu.$$

It will therefore suffice to show that $Sq^l Sq^0 \mu$ belongs to the image of θ. Using the Adem relations, we can write

$$Sq^l Sq^0 = \sum_k (2k - i_1, -k - 1) Sq^k$$

with $I_k = (i_k, \ldots, i_2, k, i_1 - k)$. The coefficient $(2k - i_1, -k - 1)$ vanishes unless $\frac{i_1}{2} \leq k < 0$. This inequality forces

$$i_1 < i_1 - k \leq \frac{i_1}{2} < 0.$$

Therefore Sq^k belongs to the image of θ by the inductive hypothesis.

Corollary 6. For each $n \geq 0$, the homotopy pullback square

$$\begin{array}{ccc}
K(F_2, n) & \rightarrow & * \\
\downarrow & & \downarrow \\
* & \rightarrow & K(F_2, n + 1)
\end{array}$$

of topological spaces determines a homotopy pushout square

$$\begin{array}{ccc}
C^* K(F_2, n) & \leftarrow & F_2 \\
\uparrow & & \uparrow \\
F_2 & \leftarrow & C^* K(F_2, n + 1)
\end{array}$$

of E_∞-algebras.
Proof. Theorem 1 implies that $C^*K(F_2, n + 1)$ is freely generated by a single class ν in degree $(n + 1)$, subject to the single relation killing $\nu - Sq^0 \nu$. We can regard the homotopy pushout

$$F_2 \otimes_{C^*K(F_2, n+1)} F_2$$

as the suspension of $C^*K(F_2, n + 1)$ in the world of (augmented) E_∞-algebras. Consequently, it has an analogous presentation as the free E_∞-algebra generated by a class $\Sigma(\nu)$ in degree n, subject to a single relation killing $\Sigma(\nu - Sq^0 \nu)$. Since the Steenrod operation Sq^0 is stable, we can identify $\Sigma(\nu - Sq^0 \nu)$ with $\Sigma(\nu) - Sq^0 \Sigma(\nu)$. Applying Theorem 1 again, we can identify this suspension with $C^*K(F_2, n)$. It is easy to see that this identification is given by the map

$$F_2 \otimes_{C^*K(F_2, n+1)} F_2 \to C^*K(F_2, n)$$

described in the statement of Corollary 6. □