18.917 Topics in Algebraic Topology: The Sullivan Conjecture
Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
\[p\)-adic Homotopy Theory (Lecture 27) \\

In this lecture we will continue to study the category \(\mathcal{S}_p^\vee \) of \(p\)-profinite spaces, where \(p \) is a prime number. Our main goal is to connect \(\mathcal{S}_p^\vee \) with the category of \(E_\infty \)-algebras over the field \(\overline{\mathbb{F}}_p \), following the ideas of Dwyer, Hopkins, and Mandell.

We begin with a brief review of rational homotopy theory. For any topological space \(X \), Sullivan showed how to construct a model for the rational cochain complex \(C^*(X; \mathbb{Q}) \) which admits the structure of a differential graded algebra over \(\mathbb{Q} \). The work of Quillen and Sullivan shows that the differential graded algebra \(C^*(X; \mathbb{Q}) \) completely encodes the “rational” structure of the space \(X \). For example, if \(X \) is a simply connected space whose homology groups \(H_i(X; \mathbb{Z}) \) are finitely generated, then the space \(X_\mathbb{Q} = \text{Map}(C^*(X; \mathbb{Q}); \mathbb{Q}) \) is a rationalization of \(X \): that is, there is a map \(X \to X_\mathbb{Q} \) which induces an isomorphism on rational homology. Here the mapping space \(\text{Map}(C^*(X; \mathbb{Q}); \mathbb{Q}) \) is computed in the homotopy theory of differential graded algebras over \(\mathbb{Q} \).

Our goal is to establish an analogue of this result, where we replace the field \(\mathbb{Q} \) by a field \(\mathbb{F}_p \) of characteristic \(p \). In this case, we cannot generally choose a model for \(C^*(X; \mathbb{F}_p) \) by a differential graded algebra (this is the origin of the existence of Steenrod operations). However, we can still view \(C^*(X; \mathbb{F}_p) \) as an \(E_\infty \)-algebra, and ask to what extent this \(E_\infty \)-algebra determines the homotopy type of \(X \). We first observe that \(C^*(X; \mathbb{F}_p) \) depends only on the \(p\)-profinite completion of \(X \). For any \(p\)-profinite space \(Y = \lim Y_\alpha \), we can define \(C^*(Y; \mathbb{F}_p) = \lim C^*(Y_\alpha; \mathbb{F}_p) \). If \(Y \) is the \(p\)-profinite completion of a topological space \(X \), then the canonical maps \(X \to Y_\alpha \) induce a map of \(E_\infty \)-algebras

\[\theta : C^*(Y; \mathbb{F}_p) \simeq \lim C^*(Y_\alpha; \mathbb{F}_p) \to C^*(X; \mathbb{F}_p). \]

Since the the Eilenberg-MacLane spaces \(K(\mathbb{F}_p, n) \) are \(p\)-finite and represent the functor \(X \mapsto H^n(X; \mathbb{F}_p) \), we deduce that \(\theta \) is an isomorphism on cohomology.

Let \(k \) be any field of characteristic \(p \). Then, for every \(p\)-profinite space \(Y = \lim Y_\alpha \), we define

\[C^*(Y; k) = C^*(Y; \mathbb{F}_p) \otimes_{\mathbb{F}_p} k \simeq \lim C^*(Y_\alpha; k). \]

Warning 1. If \(Y \) is the \(p\)-profinite completion of a space \(X \), then we again have a canonical map of \(E_\infty \)-algebras

\[C^*(Y; k) \to C^*(X; k), \]

but this map is generally not an isomorphism on cohomology, since the Eilenberg-MacLane spaces \(K(k, n) \) are generally not \(p\)-finite.

Our goal is to prove the following:

Theorem 2. Let \(k \) be an algebraically closed field of characteristic \(p \). The functor

\[X \mapsto C^*(X; k) \]

induces a fully faithful embedding from the homotopy theory of \(p\)-profinite spaces to the homotopy theory of \(E_\infty \)-algebras over \(k \).
We first need the following lemma:

Lemma 3. The functor F defined by the formula

$$X \mapsto C^*(X; k)$$

carries homotopy limits of p-profinite spaces to homotopy colimits of E_∞-algebras over k.

Proof. By general nonsense, it will suffice to prove that F carries filtered limits to filtered colimits and finite limits to finite colimits.

For any category \mathcal{C}, the category $\text{Pro}(\mathcal{C})$ can be characterized by the following universal property: it is freely generated by \mathcal{C} under filtered limits. In other words, $\text{Pro}(\mathcal{C})$ admits filtered limits, and if \mathcal{D} is any other category which admits filtered limits, then functors from \mathcal{C} to \mathcal{D} extend uniquely (up to equivalence) to functors from $\text{Pro}(\mathcal{C})$ to \mathcal{D} which preserve filtered limits. By construction, the functor F is the unique extension of the functor $X \mapsto C^*(X; F_p)$ on p-finite spaces which carries filtered limits to filtered colimits.

To show that F preserves finite limits to finite colimits, it will suffice to show that F carries final objects to initial objects, and homotopy pullback diagrams to homotopy pushout diagrams. The first assertion is evident: $F(*) \cong k$ is the initial E_∞-algebra over k. To handle the case of pullbacks, we note that every homotopy pullback square

$$
\begin{array}{ccc}
X' & \rightarrow & X \\
\downarrow & & \downarrow \\
Y' & \rightarrow & Y
\end{array}
$$

of p-profinite spaces is a filtered limit of homotopy pullback squares between p-finite spaces. We may therefore assume that the diagram consists of p-finite spaces, in which case we proved earlier that the diagram

$$
\begin{array}{ccc}
C^*(X'; F_p) & \leftarrow & C^*(X; F_p) \\
\uparrow & & \uparrow \\
C^*(Y'; F_p) & \leftarrow & C^*(Y; F_p)
\end{array}
$$

is a homotopy pushout square of E_∞-algebras over F_p. The desired result now follows by tensoring over F_p with k. \hfill \Box

Lemma 4. Let \mathcal{K} be a collection of p-profinite spaces. Suppose that \mathcal{K} contains every Eilenberg-MacLane space $K(F_p, n)$ and is closed under the formation of homotopy limits. Then \mathcal{K} contains all p-profinite spaces X.

Proof. Every p-profinite space X is a filtered homotopy limit of p-finite spaces. We may therefore assume that X is finite. In this case, X admits a finite filtration

$$X \simeq X_m \rightarrow X_{m-1} \rightarrow \ldots \rightarrow X_0 \simeq *$$

where, for each i, we have a homotopy pullback diagram

$$
\begin{array}{ccc}
X_{i+1} & \rightarrow & * \\
\downarrow & & \downarrow \\
X_i & \rightarrow & K(F_p, n_i).
\end{array}
$$

It follows by induction on i that each X_i belongs to \mathcal{K}. \hfill \Box
We now turn to the proof of Theorem 2. Fix a p-profinite space Y. For every p-profinite space X, we have a canonical map
\[\theta_X : \text{Map}(Y, X) \to \text{Map}_K(C^*(X; k), C^*(Y; k)). \]
Let \mathcal{K} denote the collection of all p-profinite spaces X for which θ_X is a homotopy equivalence. Lemma 3 implies that both sides above are compatible with the formation of homotopy limits in X, so \mathcal{K} is closed under the formation of homotopy limits. It will therefore suffice to show that every Eilenberg-MacLane space $K(F_p, n)$ belongs to \mathcal{K}. For each i, the map $\theta_{K(F_p, n)}$ induces a map
\[H^{n-i}(Y; F_p) \simeq \pi_i \text{Map}(Y, K(F_p, n)) \to \pi_i \text{Map}_K(C^*(K(F_p, n); k), C^*(Y; k)) \simeq \pi_i \text{Map}_{F_p}(C^*(K(F_p, n); F_p), C^*(Y; k)); \]
we wish to show that these maps are isomorphisms.

We now specialize to the case $p = 2$, where we have described the cochain complex $C^*(K(F_p, n); F_p)$ as an E_∞-algebra over F_p: namely, we have a pushout diagram of E_∞-algebras
\[
\begin{array}{ccc}
\mathcal{I}(n) & \xrightarrow{u} & \mathcal{I}(n) \\
\downarrow & & \downarrow \\
F_p & \xrightarrow{\text{c}} & C^*(K(F_p, n); F_p)
\end{array}
\]
where the map u classifies the cohomology operation $id - Sq^0$. It follows that we have a long exact sequence of homotopy groups
\[\ldots \to H^{n-i-1}(Y; k) \to \pi_i \text{Map}_{F_p}(C^*(K(F_p, n); F_p), C^*(Y; k)) \to H^{n-i}(Y; k) \xrightarrow{id - Sq^0} H^{n-i}(Y; k) \to \ldots \]
To compute the homotopy groups of $\text{Map}_{F_p}(C^*(K(F_p, n); F_p), C^*(Y; k))$, we need to understand the cohomology ring $H^*(Y; k)$ as an algebra over the big Steenrod algebra A_{Big}. We observe that
\[H^*(Y; k) \simeq H^*(Y; F_p) \otimes_{F_p} k. \]
The operation Sq^0 acts by the identity on the first factor, and by the Frobenius map $x \mapsto x^p$ on the field k. Since k is algebraically closed, we have an Artin-Schreier sequence
\[0 \to F_p \to k \xrightarrow{v} k \to 0 \]
where v is given by $v(x) = x - x^p$. It follows that the operation $id - Sq^0$ on $H^*(Y; k)$ is surjective, with kernel $H^*(Y; F_p)$. Thus the long exact sequence above yields a sequence of isomorphisms
\[\pi_i \text{Map}_{F_p}(C^*(K(F_p, n); F_p), C^*(Y; k)) \simeq H^{n-i}(Y; F_p) \]
as desired.

Remark 5. The proof of Theorem 2 does not require that k is algebraically closed, only that k admits no Artin-Schreier extensions (that is, that any equation $x - x^p = \lambda$ admits a solution in k). Equivalently, it requires that the absolute Galois group $\text{Gal}(\overline{k}/k)$ have vanishing mod-p cohomology.

Remark 6. Theorem 2 is false for a general field k of characteristic p; for example, it fails when $k = F_p$. However, we can obtain a more general statement as follows. Suppose that X is a p-profinite sheaf of spaces on the étale topos of $\text{Spec} k$; in other words, that X is a p-profinite space equipped with a suitably continuous action σ of the Galois group $\text{Gal}(\overline{k}/k)$. In this case, we get a Galois action on the cochain complex
\[C^*(X; \overline{k}). \]
Using descent theory, we can extract from this an E_∞-algebra of Galois invariants $C^*_\sigma(X; k)$, which we can regard as a σ-twisted version of the usual cochain complex $C^*(X; k)$ (these cochain complexes can be identified in the case where the action of σ is trivial). The construction

$$(X, \sigma) \mapsto C^*_\sigma(X; k)$$

determines a functor from p-profinite sheaves on Spec k to the category of E_∞-algebras over k, and this functor is again fully faithful.