Exercise 1. Let

\[f(z_0, z_1, z_2, \ldots, z_n) = \frac{\sum_{i=0}^{n}(i + 1)|z_i|^2}{\sum_{i=0}^{n}|z_i|^2} \]

This defines a function on the projective space \(\mathbb{CP}^n \). Find the critical points of this function and compute their indices. Use the Morse complex to compute the homology of \(\mathbb{CP}^n \).

Exercise 2. Find a good cover of a surface of genus \(g \) and compute the \(Č \)ech cohomology of this cover.

Exercise 3. Prove the following formulae where \(\alpha \) and \(\beta \) are forms and \(v \) and \(w \) are vector fields.

1. \(\iota_v(\alpha \wedge \beta) = (\iota_v \alpha) \wedge \beta + (-1)^{|\alpha|}\alpha \wedge (\iota_v \beta) \)

2. \([\mathcal{L}_v, \mathcal{L}_w] = \mathcal{L}_{[v,w]} \)

Exercise 4. Find a formula for \(\mathcal{L}_v \alpha \) in local coordinates.

Exercise 5. Show that if \(\mathcal{G} \) is a good cover (all intersections are contractible or empty) and \(\mathcal{U} \) is a refinement of \(\mathcal{G} \) then

\[\check{H}(\mathcal{U}) \equiv \check{H}(\mathcal{G}) \]