25 Differential forms and de Rham’s Theorem

25.1 The exterior algebra

Let V be a finite dimensional vector space over the reals. The tensor algebra of V is direct sum

$$\text{Ten}(V) = \mathbb{R} \oplus V \oplus V^\otimes 2 \ldots \oplus V^\otimes k \ldots$$

It is made into an algebra by declaring that the product of $a \in V^\otimes k$ and $b \in V^\otimes l$ is $a \otimes b \in V^\otimes (k+l)$. It is characterized by the universal mapping property that any linear map $V \rightarrow A$ where A is an algebra over \mathbb{R} extends to a unique map of algebras $\text{Ten}(V) \rightarrow A$.

The exterior algebra algebra is the quotient of exterior algebra by the relation

$$v \otimes v = 0.$$

The exterior algebra is denoted $\Lambda^\ast(V)$ or $\Lambda(V)$. It is customary to denote the multiplication in the exterior algebra by $(a,) \mapsto a \wedge b$ If $v_1 \ldots v_k$ is a basis for V then this relation is equivalent to the relations

$$v_i \wedge v_j = -v_j \wedge v_i \text{ for } i \neq j,$$

$$v_i \wedge v_i = 0.$$

Thus $\Lambda^\ast(V)$ has basis the products

$$v_{i_1} \wedge v_{i_2} \ldots v_{i_k}$$

where the indices run over all strictly increasing sequences of numbers between 1 and n.

$$1 \leq i_1 < i_2 < \ldots < i_k \leq n.$$

Since for each k there are $\binom{n}{k}$ such sequences of length k we have

$$\dim(\Lambda^\ast(V)) = 2^n.$$

$\Lambda^\ast(V)$ since the relation is homogenous the grading of the tensor algebra descends to a grading on the exterior algebra (hence the \ast).

We can apply this construction fiberwise to a vector bundle. The most important example is the cotangent bundle of a manifold $T^\ast X$ in which case we get the bundle of differential forms

$$\Lambda^\ast(T^\ast X) \text{ or } \Lambda^\ast(X).$$
We will denote the space of smooth sections of $\Lambda^* (X)$ by $\Omega^* (X)$. In local co-
dinates a typical element of $\Omega^* (X)$ looks like

$$
\omega = \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} \omega_{i_1 i_2 \ldots i_k} dx^{i_1} \wedge dx^{i_2} \wedge \ldots \wedge dx^{i_k}.
$$

Since the construction of $\Lambda^* (X)$ was functorial in the cotangent bundle these
bundles naturally pull back under diffeomorphism and if $f : X \to Y$ is any
smooth map there is natural map

$$
f^* : \Omega^* (Y) \to \Omega^* (X).
$$

The most important thing about differential forms is the existence of a natural
differential operator the exterior differential defined locally by the following rules

$$
d f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^i} dx^i
$$

$$
d \omega = \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} d\omega_{i_1 i_2 \ldots i_k} dx^{i_1} \wedge dx^{i_2} \wedge \ldots \wedge dx^{i_k}.
$$

Notice that we can’t invariably define a similar operator on the tensor algebra.
If we have a one form

$$
\theta = \sum_{i=1}^{n} f_i dx^i
$$

and try to define

$$
D \theta = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x^j} dx^j \otimes dx^i
$$

then when if we have new coordinates $y^1 \ldots y^n$ we have

$$
dx^i = \sum_{j=1}^{n} \frac{\partial x^i}{\partial y^j} dy^j
$$

and

$$
\theta = \sum_{m=1}^{n} g_m dy^m
$$

where

$$
g_m = f_i \frac{\partial x^i}{\partial y^m}
$$

64
\[D\theta = \sum_{i=1} \frac{\partial f_i}{\partial x^j} dx^j \otimes dx^i \]
\[= \frac{\partial f_i}{\partial x^i} \frac{\partial x^i}{\partial y^l} dy^m \otimes dy^l \]
\[= \frac{\partial f_i}{\partial y^k} \frac{\partial x^i}{\partial x^j} \frac{\partial x^j}{\partial y^l} dy^m \otimes dy^l \]
\[= \frac{\partial f_i}{\partial y^m} \frac{\partial x^i}{\partial y^l} dy^m \otimes dy^l \]
\[= \frac{\partial f_i}{\partial y^m} \frac{\partial x^i}{\partial y^l} dy^m \otimes dy^l \]
\[= (\frac{\partial}{\partial y^m}(f_i \frac{\partial x^i}{\partial y^l}) - f_i \frac{\partial^2 x^i}{\partial y^m \partial y^l}) dy^m \otimes dy^l \]
\[= \sum_{m=1}^n \frac{\partial g_l}{\partial y^m} dy^m \otimes dy^l - f_i \frac{\partial^2 x^i}{\partial y^m \partial y^l} dy^m \otimes dy^l. \]

Thus our definition depends on the choice of coordinates. Notice that when we pass to the exterior algebra this last expression vanishes that exterior derivative is well defined.

Theorem 25.1. \(d^2 = 0. \)

Proof. From the definition in local coordinates it suffices to check that \(d^2 = 0 \) on functions.
\[d^2(f) = \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x^i \partial x^j} dx^i \wedge dx^j = 0 \]
since the \(f \) smooth so the matrix of second derivatives is symmetric. \(\square \)

Proposition 25.2.
\[d(a \wedge b) = da \wedge b + (-1)^{\deg(a)} \wedge db. \]
Proof. The bilinearity of the wedge product implies that it suffices to check the result when
\[a = f \, dx^{i_1} \wedge dx^{i_2} \wedge \ldots \wedge dx^{i_k}. \]

\[\square \]

Definition 25.3. A cochain complex is a graded vector space \(C = \sum_{i=0}^{\infty} C_i \) together with a map \(d : C \to C \) so that \(dC_i \subset C_{i+1} \) and \(d^2 = 0 \). The cohomology groups of a cochain complex are defined to be
\[
H^i(C, d) = \ker(d : C^i \to C^{i+1})/\text{Ran}(d : C^{i-1} \to C^i)
\]