Chapter 18

Weierstrass-Enneper Representations

18.1 Weierstrass-Enneper Representations of Minimal Surfaces

Let M be a minimal surface defined by an isothermal parameterization $x(u, v)$. Let $z = u + iv$ be the corresponding complex coordinate, and recall that
\[
\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial u} - i \frac{\partial}{\partial v} \right), \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial u} + i \frac{\partial}{\partial v} \right)
\]
Since $u = 1/2(z + \bar{z})$ and $v = -i/2(z - \bar{z})$ we may write
\[
x(z, \bar{z}) = (x^1(z, \bar{z}), x^2(z, \bar{z}), x^3(z, \bar{z}))
\]

Let $\phi = \frac{\partial x}{\partial z}, \phi^i = \frac{\partial x^i}{\partial z}$. Since M is minimal we know that ϕ^is are complex analytic functions. Since x is isothermal we have
\[
(\phi^1)^2 + (\phi^2)^2 + (\phi^3)^2 = 0 \quad \text{(18.1)}
\]
\[
(\phi^1 + i\phi^2)(\phi^1 - i\phi^2) = -((\phi^3)^2) \quad \text{(18.2)}
\]
Now if we let \(f = \phi^1 - i\phi^2 \) and \(g = \phi^3/(\phi^1 - i\phi^2) \) we have

\[
\begin{align*}
\phi^1 &= 1/2f(1 - g^2), \\
\phi^2 &= i/2f(1 + g^2), \\
\phi^3 &= fg
\end{align*}
\]

Note that \(f \) is analytic and \(g \) is meromorphic. Furthermore \(fg^2 \) is analytic since \(fg^2 = -(\phi^1 + i\phi^2) \). It is easy to verify that any \(\phi \) satisfying the above equations and the conditions of the preceding sentence determines a minimal surface. (Note that the only condition that needs to be checked is isothermality.) Therefore we obtain:

Weierstrass-Enneper Representation I If \(f \) is analytic on a domain \(D \), \(g \) is meromorphic on \(D \) and \(fg^2 \) is analytic on \(D \), then a minimal surface is defined by the parameterization \(x(z, \overline{z}) = (x^1(z, \overline{z}), x^2(z, \overline{z}), x^3(z, \overline{z})) \), where

\[
\begin{align*}
x^1(z, \overline{z}) &= \text{Re} \int f(1 - g^2)dz & (18.3) \\
x^2(z, \overline{z}) &= \text{Re} \int if(1 + g^2)dz & (18.4) \\
x^3(z, \overline{z}) &= \text{Re} \int fgdz & (18.5)
\end{align*}
\]

Suppose in WERI \(g \) is analytic and has an inverse function \(g^{-1} \). Then we consider \(g \) as a new complex variable \(\tau = g \) with \(d\tau = g'dz \) Define \(F(\tau) = f/g' \) and obtain \(F(\tau)d\tau = fdz \). Therefore, if we replace \(g \) with \(\tau \) and \(fdz \) with \(F(\tau)d\tau \) we get

Weierstrass-Enneper Representation II For any analytic function \(F(\tau) \), a minimal surface is defined by the parameterization \(x(z, \overline{z}) = (x^1(z, \overline{z}), x^2(z, \overline{z}), x^3(z, \overline{z})) \),
where

\[
x^1(z, \bar{z}) = Re \int F(\tau)(1 - \tau^2)dz \quad (18.6)
\]

\[
x^2(z, \bar{z}) = Re \int iF(\tau)(1 + \tau^2)dz \quad (18.7)
\]

\[
x^3(z, \bar{z}) = Re \int F(\tau)\tau dz \quad (18.8)
\]

This representation tells us that any analytic function \(F(\tau) \) defines a minimal surface.

class exercise Find the WERI of the helicoid given in isothermal coordinates \((u, v)\)

\[
x(u, v) = (\sinh \sin v, -\sinh \cos v, -v)
\]

Find the associated WERII. (answer: \(i/2\tau^2\)) Show that \(F(\tau) = 1/2\tau^2 \) gives rise to catenoid. Show moreover that \(\tilde{\phi} = -i\phi \) for conjugate minimal surfaces \(x \) and \(\tilde{x} \).

Notational convention We have two \(F \)s here: The \(F \) of the first fundamental form and the \(F \) in WERII. In order to avoid confusion well denote the latter by \(T \) and hope that Oprea will not introduce a parameter using the same symbol. Now given a surface \(x(u, v) \) in \(R^3 \) with \(F = 0 \) we make the following observations:

i. \(x_u, x_v \) and \(N(u, v) \) constitute an orthogonal basis of \(R^3 \).

ii. \(N_u \) and \(N_v \) can be written in this basis coefficients being the coefficients of matrix \(dNp \)

iii. \(x_u u, x_v v \) and \(x_u v \) can be written in this basis. One should just compute the dot products \(\langle x_u, x_u \rangle, \langle x_u, x_v \rangle, \langle x_u, N \rangle \) in order to represent \(x_{uu} \) in this basis. The same holds for \(x_{uv} \) and \(x_{vv} \). Using the above ideas one gets the
following equations:

\[
x_{uu} = \frac{E_u}{2E} x_u - \frac{E_v}{2G} + eN \tag{18.9}
\]

\[
x_{uv} = \frac{E_v}{2E} x_u + \frac{G_v}{2G} + fN \tag{18.10}
\]

\[
x_{vv} = -\frac{G_u}{2E} x_u + \frac{G_v}{2G} + gN \tag{18.11}
\]

\[
N_u = -\frac{e}{E} x_u - \frac{f}{G} x_v \tag{18.12}
\]

\[
N_v = -\frac{f}{E} x_u - \frac{g}{G} x_v \tag{18.13}
\]

Now we state the Gauss theorem egregium:

Gauss Theorem Egregium The Gauss curvature \(K \) depends only on the metric \(E, F = 0 \) and \(G \):

\[
K = -\frac{1}{2\sqrt{EG}} \left(\frac{\partial}{\partial v} \left(\frac{E_v}{\sqrt{EG}} \right) + \frac{\partial}{\partial u} \left(\frac{G_u}{\sqrt{EG}} \right) \right)
\]

This is an important theorem showing that the isometries do not change the Gaussian curvature.

proof If one works out the coefficient of \(x_v \) in the representation of \(x_{uu} - x_{uvu} \) one gets:

\[
x_{uu} = \left[x_u + \frac{E_u G_u}{4EG} - \left(\frac{E_v}{2G} \right)_u - \frac{E_v G_v}{4G^2} - \frac{eG}{G} \right] x_v + \left[\frac{1}{2} N \right] \tag{18.14}
\]

\[
x_{uv} = \left[x_u + \frac{E_v}{2E} x_u + \left(\frac{G_u}{2G} \right) u x_u v + f_u N + f u \right] \tag{18.15}
\]

\[
x_{vu} = \left[x_u + \left(-\frac{E_v E_u}{4EG} + \left(\frac{G_u}{2G} \right) u + \frac{G_u G_u}{4G^2} - \frac{f^2}{G} \right) x_v + \left[\frac{1}{2} U \right] \right] \tag{18.16}
\]

Because the \(x_v \) coefficient of \(x_{uu} - x_{uvu} \) is zero we get:

\[
0 = \frac{E_u G_u}{4EG} - \left(\frac{E_v}{2G} \right)_u - \frac{E_v G_v}{4G^2} + \frac{E_v E_v}{4EG} - \left(\frac{G_u}{2G} \right)_u - \frac{G_u G_u}{4G^2} - \frac{eG - f^2}{G}
\]
dividing by E, we have

$$\frac{eg - f^2}{EG} = \frac{E_u G_u}{4E^2 G} - \frac{1}{E} \left(\frac{E_v}{2G} \right)_v - \frac{E_v G_v}{4EG^2} + \frac{E_v E_v}{4E^2 G} - \frac{1}{E} \left(\frac{G_u}{2G} \right)_u - \frac{G_u G_u}{4EG^2}$$

Thus we have a formula for K which does not make explicit use of N:

$$K = -\frac{1}{2\sqrt{EG}} \left(\frac{\partial}{\partial v} \left(\frac{E_v}{\sqrt{EG}} \right) + \frac{\partial}{\partial u} \left(\frac{G_u}{\sqrt{EG}} \right) \right)$$

Now we use Gauss’ theorem egregium to find an expression for K in terms of T of WERII

$$K = -\frac{1}{2\sqrt{EG}} \left(\frac{\partial}{\partial v} \left(\frac{E_v}{\sqrt{EG}} \right) + \frac{\partial}{\partial u} \left(\frac{G_u}{\sqrt{EG}} \right) \right) \quad (18.17)$$

$$= -\frac{1}{2E} \left(\frac{\partial}{\partial v} \left(\frac{E_v}{E} \right) + \frac{\partial}{\partial u} \left(\frac{E_u}{E} \right) \right) \quad (18.18)$$

$$= -\frac{1}{2E} \Delta (\ln E) \quad (18.19)$$

Theorem The Gauss curvature of the minimal surface determined by the WER II is

$$K = -\frac{4}{|T|^2(1 + u^2 + v^2)^4}$$

where $\tau = u + iv$. That of a minimal surface determined by WER I is:

$$K = \frac{4|g'|^2}{|f|^2(1 + |g|^2)^4}$$

In order to prove this thm one just sees that $E = 2|\phi|^2$ and makes use of the equation (20). Now we prove a proposition that will show WERs importance later.

Proposition Let M be a minimal surface with isothermal parameterization $x(u, v)$. Then the Gauss map of M is a conformal map.

proof In order to show N to be conformal we only need to show $|dNp(x_u)| =$
\[\rho(u, v)|u|, |dNp(x_v)| = \rho(u, v)|v| \] and \[dNp(x_u).dNp(x_v) = \rho^2 x_u.x_v \] Latter is trivial because of the isothermal coordinates. We have the following eqns for \(dNp(x_u) \) and \(dNp(x_v) \)

\[
\begin{align*}
dNp(x_u) &= N_u = -\frac{e}{E} x_u - \frac{f}{G} x_v \\
dNp(x_v) &= N_v = -\frac{f}{E} x_u - \frac{g}{G} x_v
\end{align*}
\] (18.20) (18.21)

By minimality we have \(e + g = 0 \). Using above eqns the Gauss map is conformal with scaling factor \(\sqrt{\frac{e^2 + f^2}{E}} = \sqrt{|K|} \) It turns out that having a conformal Gauss map almost characterizes minimal surfaces:

Proposition Let \(M \) be a surface parameterized by \(x(u, v) \) whose Gauss map \(N : M \to S^2 \) is conformal. Then either \(M \) is (part of) sphere or \(M \) is a minimal surface.

proof We assume that the surface is given by an orthogonal parameterization (\(F = 0 \)) Since \(x_u.x_v = 0 \) by conformality of \(N N_u.N_v = 0 \) using the formulas (13) (14) one gets \(f(Ge + Eg) = 0 \) therefore either \(e = 0 \) (at every point) or \(Ge + eG = 0 \) (everywhere). The latter is minimal surface equality. If the surface is not minimal then \(f = 0 \). Now use \(f = 0 \), conformality and (13), (14) to get

\[
\frac{e^2}{E} = N_u.N_u = \rho^2 E, \quad \frac{g^2}{G} = N_v.N_v = \rho^2 G
\]

Multiplying across each equation produces

\[
\frac{e^2}{E^2} = \frac{g^2}{G^2} \Rightarrow \frac{e}{G} = \pm \frac{g}{G}
\]

The last equation with minus sign on LHS is minimal surface equation so we may just consider the case \(e/E = g/G = k \). Together with \(f = 0 \) we have \(N_u = -k x_u \) and \(N_v = -k x_v \) this shows that \(x_u \) and \(x_v \) are eigenvectors of the differential of the Gauss map with the same eigenvalue. Therefore any
point on M is an umbilical point. The only surface satisfying this property is sphere so were done.

Steographic Projection: $St : S^2 - N \rightarrow R^2$ is given by $St(x, y, z) = (x/(1-z), y/(1-z), 0)$ We can consider the Gauss map as a mapping from the surface to $C \cup \infty$ by taking its composite with steographic projection. Note that the resulting map is still conformal since both of Gauss map and Steographic are conformal. Now we state a thm which shows that WER can actually be attained naturally:

Theorem Let M be a minimal surface with isothermal parameterization $x(u, v)$ and WER (f, g). Then the Gauss map of M, $G : M \rightarrow C \cup \infty$ can be identified with the meromorphic function g.

proof Recall that

$$
\phi^1 = \frac{1}{2} f(1 - g^2), \phi^2 = i2f(1 + g^2), \phi^3 = fg
$$

We will describe the Gauss map in terms of ϕ^1, ϕ^2 and ϕ^3.

$$
\begin{align*}
x_u \times x_v &= ((x_u \times x_v)^1, (x_u \times x_v)^2, (x_u \times x_v)^3) \\
&= (x_u^2x_v^3 - x_u^3x_v^2, x_u^3x_v^1 - x_u^1x_v^3, x_u^1x_v^2 - x_u^2x_v^1)
\end{align*}
$$

and consider the first component $x_u^2x_v^3 - x_u^3x_v^2$ we have

$$
x_u^2x_v^3 - x_u^3x_v^2 = 4Im(\phi^2\phi^3)
$$

Similarly $(x_u \times x_v)^2 = 4Im(\phi^2\phi^1)$ and $(x_u \times x_v)^3 = 4Im(\phi^1\phi^2)$ Hence we obtain

$$
x_u \times x_v = 4Im(\phi^2\phi^3, \phi^3\phi^1, \phi^1\phi^2) = 2Im(\phi \times \phi)
$$

Now since $x(u, v)$ is isothermal $|x_u \times x_v| = |x_u||x_v| = E = 2|\phi|^2$. Therefore we have

$$
N = \frac{x_u \times x_v}{|x_u \times x_v|} = \frac{\phi \times \phi}{|\phi|^2}
$$
Now

\[G(u, v) = St(N(u, v)) \] \hspace{1cm} (18.24)
\[= St\left(\frac{x_u \times x_v}{|x_u \times x_v|} \right) \] \hspace{1cm} (18.25)
\[= St\left(\frac{\phi \times \bar{\phi}}{|\phi|^2} \right) \] \hspace{1cm} (18.26)
\[= St(2Im(\phi^2\overline{\phi^3}, \phi^3\overline{\phi^1}, \phi^1\overline{\phi^2})|\phi|^2) \] \hspace{1cm} (18.27)
\[= \left(\frac{2Im(\phi^2\overline{\phi^3})}{|\phi|^2 - 2Im(\phi^1\overline{\phi^2})}, \frac{2Im(\phi^3\overline{\phi^1})}{|\phi|^2 - 2Im(\phi^1\overline{\phi^2})}, 0 \right) \] \hspace{1cm} (18.28)

Identifying \((x, y)\) in \(R^2\) with \(x + iy \in C\) allows us to write

\[G(u, v) = \frac{2Im(\phi^2\overline{\phi^3}) + 2iIm(\phi^3\overline{\phi^1})}{|\phi|^2 - 2Im(\phi^1\overline{\phi^2})} \]

Now its simple algebra to show that

\[G(u, v) = \frac{\phi^3}{\phi^1 - i\phi^2} \]

But that equals to \(g\) so were done.