On Tracking Distributed Objects

Rajmohan Rajaraman
Northeastern University
The Data Tracking Problem

- A data tracking scheme.
 - Find a (nearby) copy of the requested object.
 - Insert/delete object copies.
 - Update control information as nodes join/leave the system.

- Basic problem in distributed systems [Mullender-Vitányi 88, Awerbuch-Peleg 90, Guyton-Schwarz 95, ...].
Data Tracking Operations

- $\textit{find}(u, x)$: Issued by node u to locate a copy of object x.
- $\textit{insert}(u, x)$: Node u inserts a new copy of object x.
- $\textit{delete}(u, x)$: Node u deletes an existing copy of object x.
- $\textit{join}(u)$: Node u joins the system.
- $\textit{leave}(u)$: Node u leaves the system.
Applications

- DNS:
 - *find* maps names to IP addresses.

- Peer-to-peer networks:
 - Each node is a client and a server.
 - Need to provide efficient operations with lightweight nodes.

- Replicated servers.
 - The *join* and *leave* operations may be ignored.

- Tracking mobile users.
 - No copies.
Current Methods in P2P File-Sharing

- Popular commercial systems:
 - Napster
 - Gnutella
 - Freenet [Clarke et al 00]

- Selected academic research projects:
 - Oceanstore [Kubiatowicz et al 00]
 - Chord [Stoica et al 01]
 - Content Addressable Network (CAN) [Ratnasamy et al 01]
Gnutella

- Controlled flooding.
- Efficient in terms of *find* cost: each request is satisfied by a nearby copy.
- Not scalable: in the worst-case, the entire network may be flooded.
 - Susceptible to denial-of-service attacks.
 - A time-to-live (TTL) field eliminates loops and may prevent excessive flooding.
“Sequential version” of flooding.

Trades off efficiency for scalability.

- Little congestion is caused due to a single request.
- Inefficient: A request may have to be forwarded along a long chain of nodes before being satisfied.
- Need to query neighbors in order of “likelihood” of holding the object.
Measures

- Communication cost of `find`, `insert`, and `delete` operations.
 - `cost` is an idealized function of latency, bandwidth, queue sizes, etc.
 - For analysis, assume a static cost; also often assume that it is a metric.
 - Let v be the “nearest node” to u that has a copy of x.
 \[
 \text{Stretch of } \text{find}(u, x) = \frac{\text{Cost of } \text{find}(u, x)}{\text{cost}(u, v)}.
 \]

- Join and leave operations:
 - Communication cost incurred.
 - Number of nodes that are updated.
Measures, contd.

- Memory overhead: The maximum amount of control information stored at a node of the network.
 - List of nodes that the node forwards requests to.
 - List of objects that the node is aware of.

- Load at a node:
 - Static load: number of objects it is aware of.
 - Dynamic load: number of find operations affecting the node per unit time.
Outline of Ideas

• Sparse neighborhood covers [Awerbuch-Peleg 90]:
 ○ Addresses locality.
 ○ One can prove near-optimal bounds on stretch factor.
 ○ Resultant network decomposition has many potential applications.
 ○ Somewhat complicated and may be hard to update when nodes leave/join.

• A simpler flat tracking scheme [Plaxton et al 97]:
 ○ Partially addresses locality.
 ○ Addresses static load balancing.

• Consistent hashing and variants [Chord, CAN]:
 ○ Adaptive to node joins/leaves.
 ○ Addresses static load balancing.
A Tree-Based Distributed Solution

- Embed a tree into the network:
 - The embedding must respect network locality.
 - The tree and its embedding determine the location of control information among the network nodes.
 - Forward the request up the tree until a copy is located, e.g., in DNS.
Embedding Trees into Arbitrary Metrics

• Easy to see that tree embeddings may not preserve locality.

• Embed multiple “tree-like structures”:
 ○ Sparse neighborhood covers [Awerbuch-Peleg 90].
 ○ Hierarchically well-separated trees [Bartal 96].
Sparse Neighborhood Covers

• For each node u and cost c, define

$$N(u, c) = \{ v : \text{cost}(u, v) \leq c \}.$$

• A sparse 2^i-cover M_i is a collection of sets of nodes (clusters)
 ◦ For each u, some S in M_i contains $N(u, 2^i)$.
 ◦ Diameter of each cluster is $O(2^i \log n)$.
 ◦ Each node belongs to $O(\log n)$ clusters.
Finding Sparse 2^i-Covers

- Repeat the following until all nodes are “removed”.
 - Find smallest j such that $2|N(u, j2^i)| \geq |N(u, (j + 1)2^i)|$.
 - Either $j \leq \log n$ exists or $N(u, 2^i \log n)$ includes all nodes; in latter case, set $j = \log n$.
 - Include set $N(u, (j + 1)2^i)$ in cover.
 - Mark all nodes in $N(u, (j + 1)2^i)$ and “remove” all nodes in $N(u, j2^i)$ from further consideration.
 - Pick an unmarked node u and go to step 1.
 - If no unmarked node, then unmark all nodes and go to step 1.

- When a node v is “removed”, $N(v, 2^i)$ is in some cluster.

- Each node is in $O(\log n)$ clusters.
Sparse 2^i-Cover Computation

- A distributed randomized algorithm can be used to compute sparse covers [Linial-Saks 91].
- Runs in polylogarithmic time whp.
Sparse Covers and Data Tracking

- Compute sparse 2^i-cover for all $i \leq \log(Diam)$.
- Elect a leader in each cluster.
- find: For each i, node u queries leader of “home cluster” in 2^i-cover, until object located.
- insert/delete: For each i, node u informs leader of each cluster containing u in 2^i-cover.
Finding an Object

- Cost of find is

\[O\left(\sum_{i=0}^{\lfloor \log d \rfloor} \left(\frac{d}{2^i} \right) \log n \right) = O(d \log n). \]
Complexity of Measures

- Stretch of find is $O(\log n)$.
- Insert/delete:
 - Worst-case cost is $O(\text{Diam} \cdot \text{polylog}(n))$
 - Amortized stretch of $O(\text{polylog}(n))$ can be achieved [Bartal-Fiat-Rabani 92].
- Memory overhead: Some “leader” nodes need $\Omega(m)$ storage, where m is the number of objects.
- Join/leave: Requires $\Omega(n)$ nodes to be updated in worst case.
A Collection of Trees

- For each object, have a logical tree.
- Randomly map the logical tree among the nodes, respecting locality.
- The set of object copies that need to be tracked is evenly distributed.
- Scalability problem: Each node has to know its neighbors in each tree.
A Simpler Flat Tracking Scheme

- A randomized embedding of logical trees that achieves (static) load balancing and can be stored with low memory overhead.

- For a restricted class of cost functions, it achieves asymptotically efficient cost.

- Forms the data location component of Oceanstore.
Object and Node IDs

- Assign unique IDs to objects and nodes.

- Object-location information will be assigned to nodes by matching IDs.
 - For example, the node whose bits match the largest prefix of object ID is a “root” node for the object; it has information about at least one copy of the object.
 - If nodes have random IDs, the tracking scheme is topology-sensitive.
An Access Tree

- The parent of a node u is the closest node whose id matches A’s id in a longer prefix than u’s id.
Overlapping Access Trees

- The neighbors in different access trees overlap; the degree of any node across all across trees is $\log n$.
Neighbor Tables

- For $0 \leq i < \log n$, the i-neighbor of x is the nearest node y such that
 1. $y[0..i - 1]$ matches $x[0..i - 1]$.
 2. $y[j]$ is different from $x[j]$.
For each object, the list contains a pointer to a copy of the object (if one exists) in the subtree rooted at the node.
Inserting an Object Copy

- Follow the search path along the tree, updating pointer lists, until a pointer to the object found.
Object inserted at x and then requested at y.

Follow the search path, querying both primary and secondary neighbors until a pointer to object found.
Properties of the Tracking Scheme

- Scalable: The overhead incurred due to control information is small.
 - The neighbor table is small; by construction, the total number of “neighbors” of a node is $\log n$.
 - Due to the randomized ID assignment, the total set of pointers is evenly distributed.

- Efficient under certain assumptions about the communication cost function.
 - The expected access cost is within a constant factor of the optimal cost.
 - The expected number of nodes that need to be updated on a join/leave is $O(\log n)$.

Restricted Class of Cost Functions

- For every node x and real $r \geq 1$, the ratio of # nodes within cost $2r$ of x to # nodes within cost r is bounded from above and below by constants.

$$\min\{\delta N(x, r), n\} \leq N(x, 2r) \leq \Delta N(x, r).$$

- Applies to fixed-dimension meshes, constant-degree trees, and fat-trees.

- Purely “local” restriction and does not require any hierarchical decomposition of the network or regular topology.
Limitations

- The efficiency claims hold for a restricted class of cost functions.
- Does not consider dynamic load on the nodes.
- The overhead of forwarding the requests through several nodes may be significant.
- Join/leave:
 - No distributed scheme for handling these operations.
 - In practice, the number of nodes affected by a join/leave may be large.
Consistent Hashing and Chord

• A peer-to-peer lookup service [Stoica et al 01].
 ○ Using consistent hashing, map keys to nodes.
 ○ Each node has a small number of “neighbors” for forwarding requests it cannot resolve.
• Adaptive to node joins/leaves.
• Correctness in presence of inconsistent forwarding information.
Mapping keys to nodes

- If key and node IDs are selected uniformly at randomly, then asymptotically balanced load with high probability.

- One possible forwarding mechanism: if key information not stored, forward request to successor.
- Number of neighbors for each node is at most m, the number of bits in the key identifiers.
Looking up a Key

- Forward request for key to closest predecessor in the neighbor table.
- Number of hops is $O(\log n)$ whp.
Node Joins/Leaves

- New node u has an existing node use the lookup procedure to find all u’s neighbors.
 - Number of communication steps is $O(m \log n)$ whp.
 - Can reduce to $O(\log^2 n)$ whp since if $m \gg \log n$, many of the intervals would be empty.

- Similarly can identify nodes whose neighbor tables need to include u now, in $O(\log^2 n)$ communication steps.
Content Addressable Network (CAN)

- A variant of the consistent hashing idea [Ratnasamy et al 01].
- A logical d-dimensional torus is the underlying space into which keys are mapped.
- The allocation of keys to nodes is given by the partitioning determined by the nodes.
- Each new node selects a random point and splits the zone which contains this point.
- When a node leaves, two adjacent zones are merged.
Illustration of CAN

- Suppose new node 7’s random choice is a point in zone 2.
 - Zone 2 is identified using the routing scheme already in place, starting from any node.
 - Zone 2 is split into two halves and 7’s neighbors are \{1, 2, 4, 5\}.

37
Balancing Dynamic Load on Replicas

- The lookup algorithms discussed thus far do not take into account current load while mapping requests.

- In P2P file sharing:
 - New copies of popular objects will automatically get created, hence keeping average load small.
 - However, the nodes holding the key-location associations may get overloaded.

- Also needed if new copies of objects are not being created or flash crowds arise in a “localized region”.

- Questions:
 - How do we maintain dynamic load information in a distributed setup?
 - If we have all the load information, how do we assign the requests?
An Online Assignment Problem

- Assigning unit demand at client i to server j incurs a cost of $c(i, j)$ and increases load on j.

- Two possible load models:
 - There is a capacity C_j for server j.
 - There is a function f_j of load that gives additional cost for each unit demand that is served by j.

Related Variant

• If we assume that the f_j’s are concave, then we have a variant of the assignment problem discussed earlier.
 ○ Each demand is assigned to a single server.
 ○ The problem is NP-hard, by a reduction from set cover.

• Generalization of facility location.