T is a first order stable theory. Assume it has QE in \mathcal{L}.

Define $\mathcal{L}_o = \mathcal{L} \cup \exists \sigma \exists x \sigma$ σ is a unary function symbol.

Let $T_o = T \cup \exists \sigma$ σ is an automorphism $\exists x \forall x y(x) \iff y(o(x))$.

Open Problem: Does T_o have a model companion?

(T, T') are companions if every model of one embeds in a model of the other ($\models T \subseteq T'$).

T' is a model companion of T if they are companions, and in addition T' is model complete.

(e.g., if T has QE, T is model complete. $T = Th(\mathbb{R})$

T is model complete \iff every formula is equivalent to an existential formula.

If T is a universal theory, then its model companion is the theory of the class of existentially closed models of T, provided its an elementary class.

If T does not have a model companion, one can still define $\Delta = \exists \text{ existential formulas } \exists x \forall x y(x) \iff y(o(x))$.

$\iff T$ is positive Robinson w.r.t Δ has universal domain for class of existentially closed models.
Assume: T_A does have a model companion T_A.

We know that every formula $\varphi(x) \in L_0$, $\forall x \in M$

$T_A + \forall x [\varphi(x) \rightarrow \exists y \psi_q(x,y)]$ where ψ_q is q.f.

If $(M, \sigma) \models T_A$ is sufficiently saturated, every possible extension of σ (on something small w.r.t saturation) is already realised in M.

\text{PAPA} = "\text{Propriété d'amalgamation de paires d'automorphismes}"

"A concept, a way of life."

\text{PAPA over models:} \quad \text{(and some for alg closed sets)}

Assume $N_1, N_2 \models T_A$ st. $M \subseteq N_1 \trianglelefteq N_2$

Assume moreover that $\sigma \in \text{Aut}(M)$

$\sigma_1 \in \text{Aut}(N_1)$ extending σ

$\sigma_2 \in \text{Aut}(N_2)$ extending σ.

$(i \in (M, \sigma), (N_1, \sigma_1) \models T_A \quad (M, \sigma) \leq (N_1, \sigma_1) \quad \text{follows by AE})$

Then $\exists (P, \bar{\sigma}) \models T_A$ and embeddings

$\rightarrow (N_1, \sigma_1) \rightarrow (P, \bar{\sigma}) \rightarrow (N_2, \sigma_2)$

\text{(Stable theories have PAPAs over models).}
Theorem: \(T \text{ stable} \implies T \text{ has PIP PA over models.} \)

Proof: Embed \(M, N_1, N_2 \) in a very (strongly) homogeneous model \(P \models T \) st. \(M \subseteq N_i \) and \(N_1 \not\subseteq N_2 \).

Let \(\bar{a} \in N_1, \bar{b} \in N_2 \). Then claim \(\sigma_1(\bar{a}) \sigma_2(\bar{b}) \equiv \bar{a} \bar{b} \).

Why? \(\text{tp}(\bar{a}/M) \) is strong, since \(\bar{a} \not\subseteq M \).

\(\text{tp}(\bar{a}/M) \) determines \(\text{tp}(\bar{a}/M\bar{b}) \) by stationarity.

Let \(\sigma \) extend \(\sigma_2 \) to an automorphism of \(P \).

So \(\sigma_1(\bar{a}) \sigma_2(\bar{b}) \equiv \sigma^{-1} \left(\sigma_1(\bar{a}) \sigma_2(\bar{b}) \right) \).

\[\sigma^{-1} \mid_0 \sigma_1(\bar{a}), \bar{b} \]

\[\bar{a} \bar{b} \equiv \sigma_1(\bar{a} \bar{b}) = \sigma^{-1}(\sigma_1(\bar{a})) \sigma_2(\bar{b}). \]

All that's left to show is: \(\sigma_1(\bar{a}) \equiv \sigma_1(\bar{a}) \).

So we have \(\bar{a} \not\subseteq M \Rightarrow \sigma \bar{a} \not\subseteq \sigma \bar{b} \equiv \sigma_2 \bar{b}. \) \(\tag{1} \)

Also know \(\sigma_1 \bar{a} \not\subseteq M \sigma_2 \bar{b} \) since \(N_1 \not\subseteq N_2 \). \(\tag{2} \)

Moreover \(\sigma_1 \bar{a} \sigma_2 M \equiv \bar{a} M \equiv \sigma_1 \bar{a} \sigma_2 M \) \(\tag{3} \)
\[\Rightarrow \sigma_1 \overline{a} \equiv \sigma_1' \overline{a}. \]

Since this is a strong type, \[\sigma_1 \overline{a} \equiv \sigma_2' \overline{a}. \]

so we now have \[\sigma_1 \overline{a} \sigma_2 \overline{b} \equiv \overline{a} \overline{b}. \]

Conclusion: \[\sigma_1 \cup \sigma_2 \] is a partial aut. of \(P \) and so extends to an \(\text{Aut} \ \overline{e} \).

Theorem': \(T \) is stable if \(\text{the PAP} \) over \(\text{closed sets} \).

Proof: same.

Theorem'': \(T \) a stable CAT has PAP over \(\text{saturated models} \).

Proof: same.

Lemma:

Defn. Let \[\Phi = \{ \psi(x,y) \in \mathcal{L} / \psi \text{ is algebraic over } x \} \]

\[\Phi_\sigma = \{ \psi(\sigma^m(x_0), \sigma^m(x_1), \ldots, \sigma^m(y_0), \sigma^m(y_1), \ldots) : \psi(x, y) \in \Phi \} \]

Assume \((M, N) \models T_n\), \(\overline{a} \in M \), \(\overline{b} \in N \) and also that

\[\forall \psi(x,y) \in \Phi_\sigma, \text{ if } M \models \exists y \psi(\overline{a},y) \text{ then } N \models \exists y \psi(\overline{b},y). \]
Then there exists an isomorphism \(f : \text{acl}^\sigma_{\sigma} (\bar{a}) \) and commutes with \(\sigma \).

Proof exercise Take \(\sigma \)-diagram & embed & see.

Corollary Under the assumptions, \(\bar{a} \equiv \bar{b} \).

Proof

\[
\begin{align*}
M & \quad \quad \quad N \\
\text{acl}^\sigma_{\sigma} \bar{a} & \quad \xrightarrow{\text{by \ parallel}} \quad \text{acl}^\sigma_{\sigma} \bar{b} \\
\Rightarrow & \quad \quad M, N \subseteq P \\
\Rightarrow & \quad \quad \text{tp}^M \bar{a} = \text{tp}^P \bar{a} = \text{tp}^P \bar{b} = \text{tp}^M \bar{b} \\
\end{align*}
\]

In particular: if \(\forall y (x, y) \in \Phi_\sigma \), we have \(\exists y (x, y) \in \Phi_\sigma \), then \(\bar{a} \equiv \bar{b} \). It follows: every formula equivalent to a boolean combination of \(\forall \) of the form \(\exists y (x, y) \), \(r \in \Phi_\sigma \).

Exercise: How to express \(\forall y (x, y) \) as \(\exists z \psi (x, z) \) with \(\psi \in \Phi_\sigma \) as well. Remember \(\exists y (x, y) \) has a most \(n \) conjuncts \(/ x \).
Lemma 1. Bounded type-definable sets of hyperimaginaries have hyperimaginary "codes" (canonical parameters).

Namely if \(p(x) \) is a partial type with parameters \(a \), and if \(B = \exists b : pp(x,a) \subseteq \bar{b} \) is bounded, then there exists \(c \) s.t. an automorphism fixes \(c \) iff it fixes \(B \) setwise.

Proof. Let \(B = \exists b : i < \lambda \exists b_i \) be an enumeration of \(B \).

Let \(r(\bar{x}, y) = \bar{x}p(b_i, a) \). Let \(E(y, y') = \left(\exists \bar{x} r(\bar{x}, y) \land r(\bar{x}, y') \right) \lor y = y' \).

Then \(E \) is a type-definable equivalence relation.

Also: \(a E a' \) if \(B = \)

Enumerate all formulas \(\psi(x, \bar{a}) \lor x \neq x' \) (i.e. \(T \vdash \forall x \exists y \psi(x, y) \)). Enumerate them as \(\exists i \exists x x' : i < \lambda \exists \).

For every \(i \in \lambda \) and \(x_i < a \) s.t.:

1. \(\exists x_j, j < n_i \) s.t. \(\forall x_j : \exists x' : j < i \land \psi(x_j, x') \lor x \neq x' \).

2. \(T \vdash \) "\(n_i \) is not a \(n_i \) " \(n_i \) " \(n_i \) " \(n_i \) "
(Since with α this is inconsistent, so let α be maximal such that it is.)

\[E(y, y') = (y = y') \lor (\bigwedge_{i < \lambda} \exists x_i \neq x_j \lor \bigwedge_{j < n_i} p(x_j, y) \land \bigwedge_{j \in \mathcal{S}_n, \mathcal{C}, k} p(x_j, y') \land y, y' = tp(\alpha)) \]

Clearly: if $\not\vdash \alpha \models tp(\alpha)$ and $B = \exists b : p(b, \alpha) \models$, then $\vdash \alpha \models E\alpha$.

Now prove converse.

Conversely, assume $\vdash \alpha \models E\alpha$. so $\not\vdash \alpha \models tp(\alpha)$.

100 cost of proof later.

Lemma 2. Every hyperimaginaries is interdefinable with a tuple of 1 small hyperimaginaries, where small means a quotient of a tuple of length $\leq |\Gamma|$.

(Proved in an earlier lecture.)
Let T be stable (not necessarily f.o.), M is a $\mathcal{L}T$-saturated model $A \models \sigma \in \text{Aut}(M)$. Assume $A, B, C \subseteq M$, independent over M (i.e. $M \not\models \sigma$).

Moreover, we have $\sigma_A \in \text{Aut}(A)$ extending σ, $\sigma_B \in \text{Aut}(B)$ extending σ, $\sigma_C \in \text{Aut}(C)$ extending σ.

Finally, we have $\sigma_{AB} \in \text{Aut}(\text{bdd}(AB))$ extending $\sigma_A \cup \sigma_B$.

Then $\sigma_{AB} \cup \sigma_A \cup \sigma_{AC}$ is elementary (i.e. preserves the logic).

Proof. Each of $\sigma_{AB} \cup \sigma_{AC}$, $\sigma_{AB} \cup \sigma_C$, $\sigma_B \cup \sigma_{AC}$ is elementary.

Since B is bdd-closed and $A \upharpoonright C$, σ_B (from σ_A from above).

Claim: $\text{del}(\text{bdd}(AB) \cup \text{bdd}(BC)) \cap \text{bdd}(BC) = \text{del}(BC)$.

Proof of claim is clear.

Assume $x \in \sigma_A \cap \sigma_B$. Assume σ_A is a small hypersubmodel.

Then $\exists a \in A$, $b \in B$, $c \in C$, $p \in \text{bdd}(ab)$, $x \in \text{bdd}(ac)$, s.t. $x \in \text{del}(p, \overline{x}) \cup \text{bdd}(bc)$ and we may take them to be small.
If $x \in \text{bdd } (BC)$, let $q = tp(x/BC)$, then for every $\forall (x, x')$ contradicting $x = x'$, the type $\bigwedge_{i < \omega} q(x_i) \land \bigwedge_{i < j < \omega} q(x_i, x_j)$ is contradictory, and one only needs finitely many parameters in BC for that.

Since $A \boxslash BC$ and M is \(IT\)-saturated, then $M \models \forall \omega \exists x \in \text{dcl}(a, b, c)$ so $\exists a' \in M$ s.t. $a' \equiv_a \forall x, b, c$

i.e. $\exists \beta', \gamma' \in \text{bdd } (a', b), \gamma' \in \text{bdd } (a', c)$

$\exists x \in \text{dcl } (\beta', \gamma')$. \(\text{bdd } (b) = b\).

So $x \in \text{dcl } (BC)$.

Now let $d \in \text{bdd } (BC)$. I claim that $tp(d/BC) \vdash tp(d/\text{bdd } (AB) \cup \text{bdd } (AH))$.

Proof of claim:

Let e be a code for the set of $\text{bdd } (AB) \cup \text{bdd } (BC)$-conjugates of d.

Then on the one hand, e codes a set of elements in $\text{bdd } (BC) = e \in \text{bdd } (BC)$.
On the other hand: \(e \in \text{decl}(\text{bdd}(AB) \cup \text{bdd}(AC)) \).

\[\Rightarrow e \in \text{decl}(BC) \text{ by claim.} \]

\[\Rightarrow e \text{ what we wanted: if } d' \equiv d \Rightarrow d' \equiv d \Rightarrow d' \in \text{set that } e \text{ codes.} \]

Now we have \(d \in \text{bdd}(BC) \), \(e \in \text{bdd}(AB) \), \(f \in \text{bdd}(AC) \) we want to show: \(d \equiv \sigma_{BC}(d) \sigma_{AB}(e) \sigma_{AC}(f) \).

We said we know that \(\sigma_{AB} \cup \sigma_{AC} \) is elementary and therefore extends to an automorphism \(\sigma' \).

Let \(\sigma'' \) be \(\sigma'^{-1} \sigma_{BC} \).

Reduced to: \(d \equiv \sigma''(d) ef \), i.e. \(d \equiv \sigma''(d) \).

But \(\sigma' \geq \sigma_B \cup \sigma_C \Rightarrow \sigma'' \mid_{BC} = \text{id} \Rightarrow d \equiv \sigma''(d) \)

by hypothesis \(d \equiv \text{bdd}(AB) \cup \text{bdd}(AC) \)

\(\Rightarrow \sigma''(d) \Rightarrow d \equiv \sigma''(d) \). \(\square \)

Where this leads:

"Knowing" \((\text{bdd}(AB), \sigma_{AB}) \) \(\equiv \) knowing \(\text{tp}(AB) \) in the sense of \(\text{tp} \) (where \(\sigma_{AB} = \sigma_{\text{bdd}(AB)} \)).
More generally, \(\mathcal{T}^A(a) = \text{automorphism type of} \ (\text{bdd} (\sigma^2(a)), \sigma) \).

\[
\text{bdd}_\sigma(c) = \text{bdd}^{T_A}(c).
\]

Want to define \(c \lesssim b \) if \(\text{bdd}_\sigma(a) \downarrow \text{bdd}_\sigma(b) \) \(\text{bdd}_\sigma(c) \)

Then assume \(c \lesssim_b \) & have \(c_1 \lesssim_{M_1} a \) & \(c_2 \lesssim_{M_2} b \) &

\(c_1 \equiv_{M_1} c_2 \).

Write \(A := \text{bdd}_\sigma(a, M) \) etc. so \(A \downarrow B, c_1 \downarrow_{M_1} A, c_2 \downarrow_{M_2} B \).

Then we find a new \(C \) st. \(C \downarrow AB \)

\(\Downarrow \quad \) \(c \equiv_{T_A}^{T_B} c_1 \) & \(c \equiv_{T_B} c_2 \)

so \(c \lesssim_{M} AB \) & proved ind. thm. for \(M \).