Lovely Pairs

Pair: \((M, N)\) where \(M \preceq N\) (FO)

Another way of writing it: \((M, P)\) where \(P\) is a new unary predicate \& \(P(M) = N\).

We even allow \((A, P)\) where \(A \preceq M\) and \(P(A)\) is relatively algebraically closed in \(A\).

Def: Fix a simple theory \(T\).

A pair \((M, P)\) is \(K\)-lovely where \(K \geq |T|\) if

\[\forall A \preceq M \text{ st. } |A| < K \text{ and } \forall p \in S(A) \text{ (in the sense of } T)\]

1. \(\exists a \in M \text{ a } \models P \text{ and } a \nmodels P(M)\)

2. If moreover \(p \in \text{ nond} / P(A)\) then \(\exists a' \in P(M) \text{ a' } \models P\).

Lovely is \(|T|^+\)-lovely.

We call 1 the extension property: every \(p \in S(A)\) has a nondividing extension to \(A\cup P(M)\) realised in \(M\).

We call 2 the co-heir property: it says if \(p \in S(M)\) which does not divide \(/P(M)\) then every small part of \(p\) is realised in \(P(M)\).

Note: if \((M, P)\) is \(K\)-lovely then both \(M, P(M)\) are \(K\)-saturated models of \(T\).
Fact: \(k\)-lovely pairs exist for arbitrarily big \(k\).

Defn: \(\langle M, P \rangle\) be a pair and \(A \subseteq M\).

\(A\) is free if \(A \not\subseteq P(M)\)\(\bigcup_{P(A)}\).

An embedding of pairs is free if it respects \(P\) and the image is free.

Lemma Assume \(\langle M, P \rangle\), \(\langle N, P \rangle\) are lovely pairs of \(T\), \(A \subseteq M\) is free, \(|A| \leq |T|\), \(B \subseteq N\) is free, \(|B| \leq |T|\), and \(\exists f: A \rightarrow B\) preserving \(T\)-types and \(P\).

Then \(\forall c \in M\) \(\exists A' \supseteq A\), \(B' \supseteq B\) st. same holds for \(A', B'\) via \(f'\) extending \(f\).

(Back & forth but not to because of freeness)

Proof: Case I: \(c \in P(M)\).

Then \(A \not\subseteq c\). Define \(A' = A \cup c\), \(P(A') = P(A) \cup c\).

So \(A'\) is free.

Final \(d \in N\) st. \(d \supseteq cA\). Then \(d \not\subseteq B\) so we may choose \(d \not\in P(N)\) by (their prop).
Case II: \(C \not\in \text{P}(M) = \text{bdd}(\text{P}(M)) \). \(\text{F}^+ \)-set model so \(\text{bdd}-\text{closed} \)

Find \(G \subseteq \text{P}(M) \) s.t. \(|C| \leq |T| \) and \(Ac \cup \text{P}(M) \) (local cho)

\text{WMIA} \ G \supseteq \text{P}(A) \).

Let \(A' := AGc \) so \(\text{P}(A') = G \)

By case I, find \(D \subseteq \text{P}(N) \) and \(f' : AG \rightarrow BD \)

Find \(d \in M \) s.t. \(\text{AG}' \cap Dd = \emptyset \) (via \(f' \))

We may choose \(d \) s.t. \(d \not\subseteq \text{P}(N) \) by each prop.

Since \(\text{P}(AG') = G' \), we have \(\text{P}(BD) = D \).

so \(B \parallel \text{P}(N) \Rightarrow BD \parallel \text{P}(N) \)

Set \(B' = BDDd : B' \parallel \text{P}(N) \)

Left to prove \(d \not\subseteq \text{P}(N) \): if \(d \not\subseteq \text{P}(N) \) then \(d \not\parallel D \)

\(\Rightarrow d \not\in \text{bdd}(D) \Rightarrow c \not\in \text{bdd}(G) \subseteq \text{P}(M) \) contradiction.

\(\square \)

For now, assume \(T \) is a complete f.o. simple theory with \(\text{AE} \).

Let \(\text{dp} = \text{L} \cup P \).

Then: if \((M, P) \) and \((N, P) \) are i.

lovely \(T \)-pairs then \(\text{Th}_{\text{dp}} (M, P) = \text{Th}_{\text{dp}} (N, P) \).
start a back and forth between \((M, P)\) and \((N, P)\) from \(\emptyset \equiv \emptyset\).
Moreover: if \(A \subseteq (M, P)\) is free then \(tp^{(M, P)}_{dp}(A)\) is determined by \(\delta \cdot tp^{M \setminus \{A\}}_P(A)\) and the trace of \(P\) on \(A\).

Define \(T_p := Th_{dp}(\text{lovely pairs})\). \(T_p\) is complete.

Lemma Let \((A, P)\) be a pair. Then it embeds freely in a \((\kappa + 1)\)-lovely pair \((\forall \kappa)\).

Proof Let \((M, P)\) be a \(\kappa\)-lovely pair.

First embed \(P(A)\) in \(P(M)\).

\[\text{Realise } tp(A \setminus P(A)) \text{ in } M \text{ st. } A \not\models P(M)\]

Every model of \(T_p\) is a pair, and therefore can be embedded freely in a lovely pair.

Moreover, it is easy to verify: if \((M, P) \not\subseteq (N, P) \models T_p\) then \(M\) is free in \((N, P)\).

Converse? True if \((M, P), (N, P)\) are lovely. (If \((M, P) \not\subseteq (N, P)\) and \(A \subseteq M\) is free then it is free in \(N\).

\[M \not\models P(N) \Rightarrow A \not\models P(N) \Rightarrow A \not\models P(N)\]
The Big Theorem: TFAE (for T):

1. Every free extension of models of Tp is elementary
2. Every model of Tp embeds elementarily in a lovely pair.
3. Every \mathcal{L}-lovely pair is \mathcal{L}-saturated as an \mathcal{L}_p-structure.
4. There exists a lovely pair that is $|T|^+ |-|$ saturated as an \mathcal{L}_p-structure.

Proof

1 \Rightarrow 2: Since every pair embeds freely in a lovely pair & assumption.

2 \Rightarrow 3: Let (M, P) be \mathcal{L}-lovely, let $A \subseteq M$ s.t. $|A| < \kappa$.

Let $(N, P) \succeq (M, P)$ at N. We want to show $\exists a \in M$

s.t. $a \equiv^\mathcal{L}_P a^1$.

By 2 we may assume that (N, P) is a lovely pair.

(Replace by all \mathcal{L}-simple)

Enlarging A but keeping $|A| < \kappa$ we may assume A is free in M and therefore in N (same arg as for C).
Now we get \(A \downarrow_{PLA} P(N) \Rightarrow A \downarrow_{PLA} C \) (cohen)

\(\Rightarrow \exists C' \subseteq P(M) \text{ st. } C' \equiv^A C. \)

Now \(\exists a' \in M \text{ st. } a C \equiv^A a' C' \) and \(a' \downarrow_{PLA} P(M) \) (extn)

Then \(P(a AC) = P(A) C \) and \(P(a' AC') = P(A) C' \)

(so traces are the same)

and \(a AC \downarrow_{PLA} P(N) \) (since \(a A \downarrow_{PLA} P(N) \))

and \(A \downarrow_{PLA} P(M) \) and \(\Rightarrow a' AC' \downarrow_{PLA} P(M). \)

ie \(ACa \) is free in \(N \) and \(AC' a' \) is free in \(M. \)

\(\Rightarrow \ ACa \equiv^A AC'a' \Rightarrow a' \equiv^A a' \)

\(\Rightarrow 4 \) by existence.

\(4 \Rightarrow 1 \) next time.

\(5/12. \) From last time: \((M, P) \) and \(A \subseteq M \) then \(A \) is free if \(A \downarrow_{PLA} P(M) \)

If \((M, P) \) lovely and \(A \subseteq M \) is free then \(tp^A(A) + P(A) \) determine \(tp^A(A). \)

\(5/12. \) A free extension of lovely pairs is elementary.
continuing proof from last time:

\((4) \Rightarrow (1) : \) Let \((M, P) \leq (N, P)\) be free, i.e. \(M \nsubseteq P(N)\) and

\[M \cup P(N) \]

It suffices to prove that \(V(M', P) \leq (M, P)\)

st. \(|M'| \subseteq |T| \Rightarrow (M', P) \leq (N, P)\) (by Loomis-Hein-Skelan).

So we may assume \(|(M, P)| \leq |T| \)

\[(M', P) \leq (M, P) \Rightarrow M' \cup P(M) \subseteq M' \cup P(N) \]

\(P(M')\)

Since \((K, P) \) is \(T^t \)-saturated, call it \(K^t \)

and since \(T^t \) is complete: we may assume \((K, P) \leq (K', P)\)

Finally we may assume \((K', P)\) is \(|K|^t \)-lovely.

1. \((M, P) \leq (K', P) \Rightarrow M \cup P(K) \)

\(P(M)\)

Since \((N, P)\) is \(|K|^t \)-lovely, we may realise

\(tp(P(K)/M) \) inside \(P(N) \) (cohen prop.)

Call the realisation \(P(K) \).

Now we may realise \(tp(K/MUP(K)) \) in \(N \) st.

\[K \cup P(N) \]

\(MUP(K)\)

\(\times\) (cohen prop.)
so \(P(M) \trianglelefteq P(K) \trianglelefteq P(N) \).

\[
\begin{array}{c}
M \upharpoonright P(N) \Rightarrow M \upharpoonright P(N) \\
P(M) & P(K)
\end{array}
\]

\(\Rightarrow K \upharpoonright P(N) \) by \(\star \).

But \(K, N \) are lovely : \((M, P) \trianglelefteq (K, P) \trianglelefteq (N, P) \). \(\square \)

Viewing this theorem:

Good: The saturated models of \(T_P \) are precisely the only lovely pairs.

Being a lovely pair is "first order".

Bad: The class of lovely pairs is not "first order."

Theorem: There always exists a cat \(T_P \) whose saturated models are the lovely pairs.

In fact, we don't need to assume that \(T \) is f.o.:

this works for every simple thick \(T \).

Good: \(T_P \) is f.o.

Bad: \(T_P \) is a non-f.o. cat. (not too bad)
Assume \(a^c (M, P) \models T_p \). [If you want, assume \(t_o \).]

Define \(a^c := CL(a^c/P(M)) \) does not depend on \(M \):
- \(M \) is free in \(N \iff a^c \upharpoonright P(N) \upharpoonright P(M) \)
- So canonical boxes are the same.

Claim: \(a^c \in \text{der}_P(a) \) is an automorphism fixing \(a \) \text{ pointwise}, \(a \text{ actswise fixes } CL(a^c/P(M)) \).

So \(tp^p(a) \) determines \(tp^p(a, a^c) \) and therefore \(tp^p(a, a^c) \).

Note: here \(\text{ der}_P, tp^p \), \(a \), mean in the sense of \(T_p \).

On the other hand, \(a \) is free: \(a^c \upharpoonright P \models a^c \upharpoonright P \).

So \(tp(a^c) \) determines \(tp(a^c) \) and therefore \(tp(a) \).

(cheating since my certain hyperimaginay, but still works)

\[\therefore \; tp^p(a) \models tp(a) \]

If \(T_p \) is \(t_o \) i: Assume \(\exists (a, y) \models \psi \) and \(a^c (M, P) \models T_p \).

Then: \(M \models \exists y \models \psi (a, y) \iff (a, y) \models \psi \) and \(/P(M) \) (by choice)

Exercise
\[\models \psi (a, y) \text{ and } /a^c \]
Fact. T_p admits QE. up to boolean combinations of $\forall x \in P \exists y (x, y)$.

Sketch of Proof. Assume a, b both satisfy some formulas of this kind.

Let $tp_a(a) := \exists x \in P \exists y (x, y) : \forall z \in P \exists y (z, y) \neg \exists x \in P \exists y (x, y) : \forall z \in P \exists y (z, y) \neg$

Assume that $a \in (M, P)$, $b \in (N, P)$, $tp_a(a) = tp_b(b)$.

Then $q(x) \mid U$ is a copy of $P(M) \subseteq P \setminus U$

\exists a copy of $P(N) \subseteq P \setminus U$ is consistent

$\models tp(a/p(M)) \land \models tp(b/p(N))$

an \mathcal{P}-type with constants for $P(M), P(N)$.

$c_t : t \in P(M), d_s : s \in P(N)$.

$q(x) \land P(c_t) \land P(d_s) \land x \not\models tp(a, p(M)) \land x \not\models tp(b, p(N))$

Finitely realizable: $\varphi(x, c)$ in $P(M)$ and $\varphi(x, d)$ in $P(N)$, \therefore $q \models \exists y, z \in P \exists y (x, y) \land \varphi(x, z)$ consistent.
Since \(a \) satisfies the negative part of \(q \):

\[
\text{tp}(\tilde{a} / P(K)) \text{ is a cohen of } \text{tp}(\tilde{a} / P(M)), \text{tp}(\tilde{a} / P(N))
\]

\[
\tilde{a} \not\in P(M) & \tilde{a} \not\in P(K)
\]

\[
cb(\tilde{a} / P(M)) = cb(\tilde{a} / P(K)) = cb(\tilde{a} / P(N)) = a^c
\]

so \(a, a^c = \tilde{a}, \tilde{a}^c = b, b^c \)

so \(a \equiv b \implies \text{QE} \).

Theorem. Let \(a, b, c \in (M, P) \models T_p \).

Let \((a_i), b_i, c_i : i < \omega \) be a Morley seq. for \(a, b, c / P(M) \) (in sense of \(T \)).

Then TFAE: \(1. \ a \not\in b \) and \(\tilde{a} c \not\in (bc)^c \)

\(\tilde{a} \) doesn't matter what \(M \) is again.

\(2. \ a \not\in b \) and \(\tilde{a} c \not\in b c \)

\(3. \ (a_i : i < \omega) \not\in (b_i : i < \omega)

(\(c_i : i < \omega \))

Call these notions: \(a \upharpoonright^c b \)

\(\tilde{a} \)
So it follows immediately from (3) that \(\mathcal{U} \) satisfies all axioms for independence except maybe independence.

Prop. Assume \(a, b \subseteq P \) and \(b_i \subseteq a \subseteq P \) for \(i \in \{1, 2\} \)

and \(b_1 \equiv P b_2 \). Then \(\exists b \) st. \(b \subseteq P a \), \(a \subseteq P b \), \(b_i \equiv P b_i \leq \text{bd}(c) \).

So \(T_p \) is simple and \(\mathcal{U} = \text{nondividing} \) and

\[\text{bd}(P) = \text{dcl}(C) \text{dcl}(\text{bd}(C)). \]

We said \(a \equiv P b \Rightarrow \exists \text{aut. sending } a \text{ to } b \)

\[\Rightarrow \exists \text{aut. sending parallelism class of } \]

\(T_p(a/p) \) to that of \(T_p(b/p) \),

\(T_p \)-types are the same thing as types of \(T \)-parallelism classes.

Example. \(U(ACF_p) = \omega \), \(U(\text{vector space } p) = 2 \).

But \(U(ACF) = U(\text{vector space}) = 1 \).