Second proof of remark given last time:

Assume \(x_0 \leq x_1 \leq x_2 \leq \ldots \) are increasing types of variables.

\[
p_0(x_0) \leq p_1(x_1) \leq \ldots \quad \text{are increasing complete types}
\]

Let \(a_i \vdash p_i \quad \forall i \).

For each \(i \leq j \), let \(a_{j,i} \) be the subtuple of \(a_j \) corresponding to \(x_i \).

Define \(b_0 \leq b_1 \leq b_2 \leq \ldots \) s.t. \(b_i \vdash p_i \).

Let \(b_0 = a_0 \). Assuming we have \(b_i \), the \(\text{tp}(b_i) = \text{tp}(a_{i+1,i}) = p_i \)

so there is an automorphism \(f \) sending \(a_{i+1,i} \) to \(b_i \).

Let \(b_{i+1} = f(a_{i+1,i}) \). Let \(b = \bigcup b_i \). Then \(b \vdash \bigcup p_i \).

Continued on next page...
Definition: A partial type $p(x, b)$ divides over c if there is an indiscernible sequence $(b_i : i < \omega)$ in $\text{tp}(b/c)$ such that $\forall x, (x, b_i) \models U p(x, b_i)$ is consistent.

Remark 2: If $(b_i : i < \omega)$ is an indiscernible sequence in $\text{tp}(b/c)$ then it has an automorphic image which is also c-indiscernible.

Proof: By compactness, for every λ, there is a similar sequence ϕ in $\text{tp}(b/c)$. Let $p_n(x_0, \ldots, x_{n-1}) = \text{tp}(b_0 \ldots b_{n-1}) : \phi(x) \land \forall b_0 \ldots b_{n-1} \in \text{consistent}.

Now extract a c-indiscernible sequence: $(b_i'' : i < \omega)$

1. $b_i'' = b_i$ for all i.
2. $\forall i_0 < \ldots < i_{n-1} \in \omega : p_n(b_{i_0}'' \ldots b_{i_{n-1}}'') \Rightarrow p_n(b_{i_0}'' \ldots b_{i_{n-1}}'') \Rightarrow \text{tp}(b_i : i < \omega) = \text{tp}(b_i'' : i < \omega)$.

b_i'' is an automorphic image of b_i.

Definition: $a \nmid_b c$ (read: a independent of b over c) if $\text{tp}(a/bc)$ does not divide a/c.

Proposition: \(a \perp b \iff \forall c, \text{ every indiscernible sequence in } t_p(b/c) \text{ has an automorphic image in } t_p(b/ac) \).

Proof: \(\Rightarrow \): Assume \(a \perp b \), i.e. \(t_p(a/bc) \) does not divides (and) over \(c \), while \(p(x,bc) = t_p(a/bc) \).

Let \((b_i : i < \omega) \) be an indiscernible sequence in \(t_p(b/c) \).

Then \((b_i : c < \omega) \) is indiscernible in \(t_p(bc/c) \).

[By the remark, there is an automorphic image \((b_i^* : i < \omega) \) which is \(c \)-indiscernible and in \(t_p(b/c) \)]

\(\Rightarrow \) \((b_i^* : c < \omega) \) is indiscernible in \(t_p(bc/c) \).

Since \(t_p(a/bc) \) divides over \(c \), there is \(a' \models \forall p(x,bc) \).

In particular, \(a' \models t_p(a/c) \).

Applying, let \(f \) be an \(c \)-automorphism s.t. \(f(a/c) = ac \).

Therefore \((b_i^*) = f(b_i^*) \) is an automorphic image of \((b_i) \)

and \(\forall p(x,b_i^*) \Rightarrow b_i^* \models t_p(b/ac) \).

\(\Leftarrow \): Let \((b_i c) \) be any indiscernible sequence in \(t_p(b/c) \).

We need to find \(a' \models \forall p(x,bic) \).

By assumption, \((b_i) \) has a \(c \)-automorphic image \((b_i^*) \) in \(t_p(b/ac) \).

Let \(f \) be the \(c \)-automorphism & let \(a' = f'(a) \).
Then \(\Lambda p(a, b / c) \rightarrow \Lambda p(a', b / c) \).

Corollary:

1. **Downward right-hand transitivity:**

 \[a, b, c, d : a \Downarrow b, d \rightarrow a \Downarrow b \wedge a \Downarrow c \wedge b \Downarrow c. \]

2. **Upward left-hand transitivity:**

 \[a \Downarrow b \quad \text{and} \quad d \Downarrow b \rightarrow a \Downarrow c \quad \text{and} \quad d \Downarrow c \]

Proof

1. Assume \(a \Downarrow b d \) then if (b) is \(c \)-indiscernible in \(\text{tp}(b / c) \) then by extension/extension, we can find (d) st.

 \((b ; d) \) is \(c \)-indiscernible in \(\text{tp}(b d / c) \).

 (Extend to \((b ; i < \lambda) \), for each \(i \) find \(d i \) st. \(b d i \equiv_c b d \).

 and extract a \(c \)-indiscernible sequence \((b ; d i) \).

2. \(b < w \equiv_c b < w \) (both are similar \(c \)-indiscernible seq of same length).

 So we may assume \(b < w = b < w' \).

 Since \(a \Downarrow b d \), there is a \(c \)-automorphic image \((b ; d) \) in \(\text{tp}(b d / c) \).

 In particular \((b ; d) \) is a \(c \)-automorphic image of \((b) \) in

 \(\text{tp}(b d / c) \rightarrow a \Downarrow c \).

 \((b ; d) \)

 \((b ; d) \)

 Now: let \((a ; b c d) \) be bi-indiscernible in \(\text{tp}(b c d / c) \).

 Then \((a ; b c d) \) is bi-indiscernible in \(\text{tp}(b c d / c) \).

 Let \(\text{tp}(a / b c d) = q(x b c d) \).
So $\forall y (x, bc \in y) \text{ is consistent} \Rightarrow a \not\subset bc d$.

(2) Assume $a \not\subset b, d \not\subset b$.

Let (b_1') be a c-indiscernible sequence in $tp(b/c)$.

Since $a \not\subset b$, there is a c-automorphic image (b_1') in $tp(b/ac)$.

By recursiveness,

(b_1') is c-indiscernible and by a previous remark has a c-automorphic image which is still in $tp(b'/ac)$ and b in addition is ac-indiscernible.

So we may assume (b_1') is ac-indiscernible.

Since $d \not\subset b$, then (b_1') has an ac-automorphic image in $tp(b'/acd)$.

Conclusion (b_1') has a c-automorphic image in $tp(b'/acd)$.

$$\exists a \in c \not\subset b$$

Lemma. A partial type $p(x, b)$ divides e iff there is a formula $p(x, b') \in p(x, b)$ which does.

(Convention: all partial types are closed under conjunction)

Proof \Leftarrow: clear.

\Rightarrow: Assume (b_1') is c-indiscernible and $e \cup p(x, bi)$ is inconsistent. By compactness, only finitely many
formulas are required for inconsistency, say
\[\psi_0(x, b_0) \in p(x, b_0), \ldots, \psi_{k-1}(x, b_{k-1}) \in p(x, b_{k-1}). \]
Let \(\psi = \bigwedge \psi_i(x, b_i) \). Then \(\psi(x, b) \in p(x, b) \).

\[\text{and} \quad \bigwedge \psi(x, b_i) \text{ is inconsistent} \implies \psi(x, b) \text{ divides } \langle c \rangle. \]

Corollary Finite Character \(a \perp b \implies (a, b, c \text{ are possibly infinite}) \)

\[\iff \forall a' \in a \text{ and } b' \in b \text{ finite, } a' \perp b' \]

Proof \[\iff \text{clear.} \]

\[\iff \text{if } a \perp b \text{ then there is a formula } \psi(x, b c) \in p(a/x) \]

which divides over \(c \).

Now only finite subtypes and \(x' \in x \) actually appear in \(\psi \). Let \(a' \subset a \) correspond to \(x' \in x \).

\[\implies \psi(x', b' c) \in p(a'/b' c). \]

\[\implies a' \perp b' \]

\[\Box. \]