\(p(x, b) \) divides \(c \) if \(\exists \) \(c \)-indiscernible sequence \((b_i)\) in \((b, b/c)\) s.t. \(\forall x, b_i \) is inconsistent.

\(\exists K < \omega \) \(\exists \psi(x, b) \in p(x, b) \) s.t. \(\forall x, b_i \) is inconsistent \(\Rightarrow \exists \psi(x, b_i) \) is \(K \)-consistent.

If we have negations then we can say \(\forall x \neg \exists k \exists x \psi(x, b) \) and apply ext/ext to get \((b_i)\) indiscernible.

Defn. Let \(\psi(x, y) \) be a formula \((x, y \notin \text{tuple of variables})\) \(K < \omega \).

\(\psi(y_0, y_{k-1}) \) another formula s.t. each \(y_i \) has the same length as \(y \). [each \(y_i \) is in the sort of \(y \)].

Then \(\psi \) is a \(K \)-inconsistency witness for \(\psi \) if

\[\Gamma \vdash \exists y \psi(y) \land \forall k \psi(x, y). \]

Defn. A formula \(\psi(x, b) \) divides \(c \) w.r.t. a \(K \)-inconsistency witness \(\psi^* \) if there exists a sequence \((b_i)\) in \(p(b, b/c)\) satisfying:

\[\forall i_0, \ldots, i_{k-1} \psi(b_{i_0}, \ldots, b_{i_{k-1}}) = \psi^*(b) \quad [\psi^*(y_0, \ldots) = \forall i_0, \ldots, i_{k-1} \psi(y_{i_0}, \ldots, y_{i_{k-1}}) \text{ for all } i_0, \ldots, i_{k-1}]. \]
Prop: 1. \(\varphi(x,b) \) divides \(c \) \(\implies \) 2. divides \(c \) \(\forall \) some \(k \)-inconsistency witness \(\varphi \) \(\implies \) 3. \(\exists c \)-indiscernible sequence \((u_i)\) in \(tp(blc) \) s.t. \(\varphi(b_0, b_{k-1}) \).

Proof: 1.\(\implies \) 2. \(\exists \) an indiscernible seq \((u_i)\) in \(tp(blc) \) s.t. \(\land p(x, b_i) \) is inconsistent.

By compactness \(\exists k < \omega \) s.t. \(\land \varphi(x, y_i) \) is inconsistent.

Let \(q(y_0, \ldots, y_{k-1}) = tp(b_{2k}) \):

\(\Rightarrow \ q(y) \land \land_{i < k} p(x, y_i) \) is inconsistent.

\(\Rightarrow \ \exists \ y(\tilde{y}) \in tp(b_{2k}) \) s.t. \(\varphi(\tilde{y}) \land \land_{i < k} \varphi(x, y_i) \) is inconsistent \(\checkmark \).

2.\(\implies \) 3. We have a sequence \((u_i)\) in \(tp(blc)\) satisfying \(\tilde{\varphi} \).

Since compactness applies to \(\varphi \) (it does not apply to \(\exists \exists \forall (x, y) \)), we may apply extension/extraction to get a sequence \((u'_i)\) indiscernible \(/c \) having same properties.

3.\(\implies \) 1. Clear. \((\land \varphi(x, b_i) \) is inconsistent because \(\forall \varphi(b_0, b_{k-1})) \).
Defn: Let \(\alpha \) be a type of variables.

Then

\[
\Xi(x) = \{ (y(x, y), \psi(y_0, \ldots, y_{k-1}) : \psi(x, y) \in \Delta; \ k < \omega) \}
\]

\(\psi \in \Delta \) is a \(k \)-inconsistency witness for \(\psi \).

\(\alpha \) is fixed but \(k \) and \(\psi \) vary.

Defn: For every partial type \(pl(c) \) (with parameters) we associate a "rank", written \(D(p, \Xi) \), which is a set of sequences in \(\Xi \) of ordinal length.

For \(\xi \in \Xi^\alpha \) we decide whether \(\xi \in D(p, \Xi) \) by induction on \(\alpha \):

\(\alpha = 0 \): \(\langle \cdot \rangle \in D(p, \Xi) \) iff \(p \) is consistent.

\(\alpha \) limit: \(\xi \in D(p, \Xi) \) iff \(\forall \beta < \alpha \); \(\xi |_\beta \in D(p, \Xi) \).

\(\alpha = \beta + 1 \): \(\xi = \langle \Theta, (\psi(x, y), \psi(y)) \rangle \) where \(\Theta \in \Xi^\beta \).

Assume \(p \) is over \(b \).

Then \(\xi \in D(p, \Xi) \) iff \(\exists c \) s.t. \(\psi(x, c) \) divides \(b \) wrt \(\psi \) and \(\Theta \in D(p(x, \forall \psi(x, c), \Xi) \).
Obvious things: If $\xi \in D(p, \equiv)$ and $p \vdash q$ then $\xi \in D(q, \equiv)$.

- $D(p, \equiv)$ is closed under subsequences.

Still need to get rid of p/b assumption ...

Remark We prove by induction on α that for $\xi \in \equiv^\alpha$ and $p(x, b) \equiv q(x, b')$ that $\xi \in D(p(x, b), \equiv)$ iff $\xi \in D(q(x, b'), \equiv)$.

(i.e. choice of set of parameters b is not important)

Proof: $\alpha = 0 \checkmark$

α limit \checkmark

Let $\alpha = \beta + 1$, $\xi = \langle \theta, (\psi, \psi) \rangle$ and assume $\xi \in D(p, \equiv)$.

\Rightarrow $\exists c \ s.t. \psi(x, c)$ divides b w.r.t. ψ, $\theta \in D(p \psi(x, c), \equiv)$

\Rightarrow $\exists b'$-indiscernible sequence (c_i) in $\mathcal{L}_p(c/b)$ s.t.

$\psi(c_0, c_{k-1})$ and $\theta \in D(p \psi(x, c), \equiv) = D(p \psi(x, c), \equiv)$

By extension/extraction there is a $b b'$-indiscernible

sequence (c_i) similar over b to (c_i).

($\therefore \psi(c_0, c_{k-1}) \Rightarrow \psi(c_0, c_{k+1})$.)
\(\Theta \in D(p \land \psi(x, c_0'), \equiv) = \bigwedge D(q \land \psi(x, c_0'), \equiv) \)
and \(\psi(x, c_0') \) divides \(bb' \) w.r.t. \(\psi \) and thus \(bb' = \bigwedge E D(q, \equiv) \).

Defn: \(T \) is thick if indiscernibility is type-definable i.e.

A tuple \(x \in \) partial type \(\Theta(x, c) \) saying precisely that \((x_c) \) is indiscernible.

Remark: Let \(a, b \) and \((a_i \prec a_0) \) be possibly infinite tuples. Then \((a_i) \) is indiscernible \(b \) iff

for finite subtypes \(b' \subseteq b \) and \(a_0' \subseteq a_0 \),
if \(a_i' \subseteq a_i \) are the corresponding subtypes,
the sequence \((a_i' b', \prec a_0) \) is indiscernible.

It follows that for \(T \) to be thick, it suffices that indiscernibility of sequences of finite tuples be definable and we get definability of indiscernibility / something.

Remark: A first order theory is thick:

Let \(p(x, y) \) be a partial type, \(x \& y \) possibly infinite tuples.
Assume \(p \) is closed under finite conjunction.

Let \(q(y) = \exists x' \psi(x', y') \cdot x' \subseteq x, y' \subseteq y \) finite \(\equiv \psi(x, y) \psi x \psi y \).

Then \(q(y) = \exists x' p(x, y) \). By compactness.
clear \implies \text{compactness, if } \vdash q_i(b), \text{ then } p(x, y, b) \text{ is consistent.} \quad \Box

Let \(g \in \tau^\alpha \), i.e. \(g = ((\varphi_i(x, y), \psi_i) : i < \alpha) \).

Define \(\text{div}_{\alpha, g} (x) \) to be the partial type saying:

There exist \(c_i : i < \alpha \) of the lengths of the corresponding \(y_i \) st.

1. \(\forall x \exists y (x, c) \)

2. For all \(i < \alpha \), there exists a \(b, c, \) -indiscernible sequence \((c_i^j : j < \omega) \) with \(c_i^0 = c_i \) and

\(\psi_i(c_i^0 \ldots c_i^{k_i-1}) \).

Prop: Let \(p(x) \) be a partial type over \(\mathcal{L} \).

Then \(g \in \text{Di}(p, \tau) \) iff \(p(x) \land \text{div}_{\alpha, g} (x) \) is consistent.

23. Proof: By induction on \(\alpha \), where \(g = ((\varphi_i, \psi_i) : i < \alpha) \).

\(\alpha = 0 \), \(\iff g \in \text{Di}(p, \tau) \) iff \(p \) is consistent

\(\iff p(x) \land \text{div}_{\alpha, g} (x) \) is consistent \(\iff p(x) \land \text{div}_{\alpha, g} (x) \) is consistent \(\Box \)
Theorem TFAE

1. \(T \) is simple (i.e., \(\kappa^0(\Gamma) < \infty \)).

2. For all \((\psi, \psi) \in \Xi \), \(\exists \ell < \omega \) st. there is no sequence \(\{ b_i : i < \ell \} \) where each \(\psi(x, b_i) \) divides \(\prod_{i < \ell} b_i \) w.r.t. \(\psi \) and \(\bigwedge_{i < \ell} \psi(x, b_i) \) is consistent.
3. \(k^0(T) \leq |T|^t \)

4. \(\forall p \quad \text{tp}(p, \equiv) \leq \equiv/k|T|^t \).

Proof: 1 \(\Rightarrow \) 2:

Assume \(k^0(T) < \infty \) but 2 is false.

there are \(\psi_i(x, \varphi) \equiv \forall x \text{ s.t. } \forall l < \infty \exists (b_i : i < l) \)

\(\forall (x, b_i) \text{ divides } /b_i \text{ and } \forall \psi_i(x, b_i) \text{ is consistent} \)

\(\Rightarrow \) by compactness \(\exists (b_i : i < k^0(T)) \text{ s.t.} \)

\(\psi_i(x, b_i) \text{ divides w.r.t. } \psi /b_i \forall i < k^0(T) \)

and \(\forall i < k^0(T) \psi(x, b_i) \text{ consistent} \).

So let \(a \not\models \bigwedge \psi_i(x, b_i) \), then \(\text{tp}(a/b_{k^0(T)}) \)

contradicts the definition of \(k^0(T) \).

2 \(\Rightarrow \) 3 Assume \(\equiv/k|T|^t \) is false.

Then we have singleton \(s^T \) \(A \) s.t.

\(\text{tp}(a/\varphi) \text{ divides over every } A \in A \text{ s.t. } |A_0| \leq |T|^t \).

Construct a sequence \((b_i : i < |T|^t) \text{ in } A \):

\(\forall i \exists \psi_i(x, b_i) \in \text{tp}(a/\varphi) \text{ which divides }/b_i \)
Moreover, let $\psi_i(x,bi)$ divide b_{ci} w.r.t ψ_i.

Since $|\Xi| = |\Omega|$, there is a pair $(\psi, \psi) \in \Xi$.

$\Xi = \{ e \in (\psi, \psi) \text{ is infinite.} \}

\Rightarrow \forall e \in \Xi \psi(x,bi) \text{ div } b_{e} e_{j} : j < i \text{ w.r.t } \psi.

Contradicting (2).

(3) \Rightarrow (1) by defn.

(2) \Rightarrow (4) if $\exists \xi \in \Xi^{1+}, \xi \in D(p, \Xi)$, then some argument.

Then some pair (ψ, ψ) appears infinitely many times in ξ,

contradicting (2) (look at a realisation $a \notin \text{ div } \psi, \xi$).

(4) \Rightarrow (2) if Ξ is true, obtained by compactness.

If (2) is false for (ψ, ψ), then by compactness,

$\text{div}_{\psi}(\psi, \psi)_{1+}$ is consistent \Rightarrow not (4). \qed
So from now on, assume T is simple

$\Rightarrow \forall p \ D(p, \Xi) \text{ is a set, closed under limits (by def).}$

$\Rightarrow \text{contains maximal element.}$

$[\xi \subseteq \xi \text{ if } \xi \text{ is an extension of } \xi]$.

Theorem Let $p = tp(a/b)$ and $q = tp(a/bc)$.

TFAE

1. $D(p, \Xi) = D(q, \Xi)$.
2. $\exists \xi \in D(p, \Xi)$ maximal that is also in $D(q, \Xi)$ (not unique still).
3. q does not divide over b.

Proof

1. \Rightarrow 2. maximal elements exist.
2. \Rightarrow 3. assume q divides over b.
3. \Rightarrow 1. (tricky part)

Let $\xi = \{(\psi_i, \psi_i) : i < \lambda \}$.
We prove by induction that if \(\xi \in D(p, \Xi) \) then
\[\xi \in D(q, \Xi). \] (Converse is clear since \(p \leq q \).

To come later...

\[\text{Cor of } \Xi \Rightarrow \Xi : \text{ Extension is true.} \]

Proof We are given \(a, b, c \).

Let \(\xi \in D(\text{tp}(a/c), \Xi) \) be maximal.

Since \(\text{tp}(a/c) \) is over \(b, c \) as a partial type,
\(p(x) \wedge \text{div}_{b, c}(x) \) is consistent.

Let \(a' \not\models p(x) \wedge \text{div}_{b, c}(x) \).

Then \(a' \equiv_c a \) and \(a' \not\models b \) since \(D(\text{tp}(a'/b/c), \Xi) \)
contains a maximal element of \(D(\text{tp}(a'/c), \Xi) \). \(\Box \)

Now since we have extension, we have symmetry, transitivity etc. Still have independence theorem.

Lemma Assume \((a_i : i \leq \omega) \) is \(c \)-indiscernible.

Then \(a_\omega \not\models c \).
Proof. Let \((c_j : j < \omega)\) be \(a_\omega\)-indiscernible.

in \(\text{tp}(c / a_\omega)\), let \(\varphi(x, a < n, c) \in \text{tp}(a_\omega/a < \omega c)\).

Then \(\vdash \bigwedge_j \varphi(a_n, a < n, c_j)\) (since \(\vdash \varphi(a_n, a < n, c)\))

\(\implies \varphi(x, a < n, c) \text{ dnd } / a < \omega\) \(\Box\)

Lemma. Let \((a_i : i < 2\omega)\) be a \(c\)-indiscernible sequence. Then \((a_{\omega + i} : i < \omega)\) is a Morley sequence over \(c, a < \omega\).

Proof. \((a_i : i < \omega)\) is \(a_\omega\)-indiscernible over \(c \cup \{ a_j : \omega \leq j < 2\omega \}\).

\(\implies a_\omega \nvdash_c a_\omega \quad \text{trans} \quad a_\omega \nvdash a_\omega c\)

Notice \(0 : \omega, \omega + 1, \dotsc \) \(\nvdash c, a_\omega, a_\omega, a_\omega, a_\omega, \dotsc\).

\(\text{tp}(a_\omega, a_{\omega + n} / c) = \text{tp}(a_\omega, a_{\omega + n} / c)\).

\(\implies a_{\omega + n} \nvdash a_{\omega + n} c\)

\(\implies a_{\omega + n} \nvdash a_{\omega + n} c\)

want to prove:

By induction, \(a_\omega \nvdash a_{\omega + n} c\) \(a_{\omega + n} c\) \(\Box\)

For \(n = 0\) \(\check{\Box}\).
For \(n+1 \) we have \(\alpha_{\omega+n} \upharpoonright \alpha_{\omega+n-1} \sim_{\text{trans}} \omega \),

\[\iff \alpha_{\omega+n} \cup \alpha_{\omega+n-1} \sim_{\text{trans}} \alpha_{\omega^n \omega} \]

\[\iff \alpha_{\omega^n \omega} \cup \alpha_{\omega^n \omega-1} \sim_{\text{trans}} \alpha_{\omega^n \omega} \]

So now by symmetry, \(\forall m \alpha_{\omega^m} \cup \alpha_{\omega^m-1} \sim_{\text{trans}} \alpha_{\omega^m} \). \(\square \)

Corollary

Assume that \(p(x, b, c) \) does not divide over \(c \).

Let \((b_i) \) be \(c \)-indiscernible in \(\text{tp}(b/c) \).

Then \(\cup p(x, b_i, c) \) is consistent and\(\vdash P \).

[Last few lemmas: Kim "Forking in Simple Theories"]]

Proof Extend \((b_i: i < \omega) \) to a similar sequence \((c, b_i: i < \omega) \).

By nondividing, \(\exists a \in p(x, b_0, c) \) and

\[a \vdash p(x, b_0, c) \]

\[\iff \exists \sigma \in \text{tp}(b_0, c) \exists x \in p(x, b_0, c) \sigma \]

\((b_{\omega i}) \) is \(b_{\omega_1}c \)-indiscernible. \(\iff \) since \(a \vdash b_{\omega_0}c \)

We may assume that \((b_{\omega i}: i < \omega) \) is \(b_{\omega_0}c \)-indiscernible

since we can send it to one by an \((b_{\omega_1}, c) \)-automorphism.
But \((b_{\text{wti}} : <\omega)\) is a Morley sequence over \((b_{<\omega}, c)\).

\[=\] by a previous result, since it is also

\[a, b_{<\omega}, c -\text{indiscernible, we have } a \not\subseteq b_{<\omega}, \text{ wtii}, \ldots\]

Now add in \(a \not\subseteq b_{<\omega} \rightarrow a \not\subseteq b_{<\omega}, \text{ wtii}, \ldots\)

We also have \(\forall c \in \mathcal{C} : p(a, b_{\text{wti}}, c) \forall c <\omega\).

\[\Rightarrow \bigcup_c p(x_{\text{wti}}, c) \text{ does not divide } /c\]

\[\Rightarrow \bigcup_c p(x_{\text{wti}}, c) \text{ does not divide } /c. \quad \square\]

25. Improved Improved Extension

If \(p(x, bc)\) is a partial type over \(bc \in d/c\), then it can be extended to a complete type over \(bc\) that does not divide \(/c\).

Proof. By basic extn, \(\exists \text{ Morley sequence } (b_i)\) for \(b/c\).

Since \(p(x, bc)\) and \(c \in \mathcal{C}\) \(\mathcal{M} \vdash \forall x (p(x, bc))\)

We may assume \((b_i)\) is \(a/c -\text{indiscernible}\)

\[\Rightarrow a \not\subseteq b_i\]

Then \(q(x_{b/c}, c) := tp(a'/bc) \text{ and } /c \& q(x, bc)\) is 0

what we wanted \(\square\)