The Projection(‘Hat’) Matrix and Case Influence/Leverage

Recall the setup for a linear regression model
\[y = X\beta + \epsilon \]
where \(y \) and \(\epsilon \) are \(n \)-vectors, \(X \) is an \(n \times p \) matrix (of full rank \(p \leq n \)) and \(\beta \) is the \(p \)-vector regression parameter.

The Ordinary-Least-Squares (OLS) estimate of the regression parameter is:
\[\hat{\beta} = (X^T X)^{-1} X^T y \]
The vector of fitted values of the dependent variable is given by:
\[\hat{y} = X \hat{\beta} = X(X^T X)^{-1} X^T y = Hy, \]
where \(H = X(X^T X)^{-1} X^T \) is the \(n \times n \) “Hat Matrix”
and the vector of residuals is given by:
\[\hat{\epsilon} = (I_n - H)y, \]

1 (a) Prove that \(H \) is a projection matrix, i.e., \(H \) has the following properties:
- Symmetric: \(H^T = H \)
- Idempotent: \(H \times H = H \)

1 (b) The \(i \)th diagonal element of \(H \), \(H_{i,i} \) is called the leverage of case \(i \). Show that
\[\frac{d\hat{y}_i}{dy_i} = H_{i,i} \]

1 (c) If \(X \) has full column rank \(p \),
\[\text{Average}(H_{i,i}) = \frac{p}{n} \]
Hint: Use the property: \(tr(AB) = tr(BA) \) for conformal matrices \(A \) and \(B \).

1 (d) Prove that the Hat matrix \(H \) is unchanged if we replace the \((n \times p) \) matrix \(X \) by \(X' = XG \) for any non-singular \((p \times p) \) matrix \(G \).
1 (e) Consider the case where \(X \) is \(n \times (p + 1) \) with a constant term and \(p \) independent variables defining the regression model, i.e.,

\[
X = \begin{bmatrix}
1 & x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\
1 & x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n,1} & x_{n,2} & \cdots & x_{p,n}
\end{bmatrix}
\]

Define \(G \) as follows:

\[
G = \begin{bmatrix}
1 & -\bar{x}_1 & -\bar{x}_2 & \cdots & -\bar{x}_p \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 1
\end{bmatrix}
\]

where \(\bar{x}_j = \frac{\sum_{i=1}^{n} x_{i,j}}{n} \), for \(j = 1, 2, \ldots, p \).

By (d), the regression model with \(X' = XG \) is equivalent to the original regression model in terms of having the same fitted values \(\hat{y} \) and residuals \(\hat{\epsilon} \).

- If \(\beta = (\beta_0, \beta_1, \ldots, \beta_p)^T \) is the regression parameter for \(X \), show that \(\beta' = G^{-1}\beta \) is the regression parameter for \(X' \).

Solve for \(G^{-1} \) and provide explicit formulas for the elements of \(\beta' \).

- Show that:

\[
[X' \! X'] = \begin{bmatrix}
\frac{n}{p} & 0^T \\
0 & \chi^T \chi
\end{bmatrix}
\]

where \(\chi = \begin{bmatrix}
x_{1,1} - \bar{x}_1 & x_{1,2} - \bar{x}_2 & \cdots & x_{1,p} - \bar{x}_p \\
x_{2,1} - \bar{x}_1 & x_{2,2} - \bar{x}_2 & \cdots & x_{2,p} - \bar{x}_p \\
\vdots & \vdots & \ddots & \vdots \\
x_{n,1} - \bar{x}_1 & x_{n,2} - \bar{x}_2 & \cdots & x_{p,n} - \bar{x}_p
\end{bmatrix}
\]

- Prove the following formula for elements of the projection/hat matrix:

\[
H_{i,j} = \frac{1}{n} + (x_i - \bar{x})^T [\chi^T \chi]^{-1} (x_j - \bar{x})
\]

where \(x_i = (x_{i,1}, x_{i,2}, \ldots x_{i,p})^T \) is the vector of independent variable values for case \(i \), and \(\bar{x} = (\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_p)^T \).

The leverage of case \(i \), \(H_{i,i} \), increases with the second term, the squared Mahalanobis distance between \(x_i \) and the mean vector \(\bar{x} \).
Case Deletion Influence Measures

2 (a) Sherman-Morrison-Woodbury (S-M-W) Theorem: Suppose that A is a $p \times p$ symmetric matrix of rank p, and a and b are each $q \times p$ matrices of rank $q < p$. Then provided inverses exist

$$(A + a^T b)^{-1} = A^{-1} - A^{-1} a^T (I_q + b A^{-1} a^T)^{-1} b A^{-1}.$$

Prove the theorem.

2 (b) Case deletion impact on $\hat{\beta}$: Apply the S-M-W Theorem to show that the least squares estimate of β when the ith case is deleted from the data is

$$\hat{\beta}_{(i)} = \hat{\beta} - \frac{(X^T X)^{-1} x_i \hat{\epsilon}_i}{1 - H_{i,i}},$$

where x_i^T is the ith row of X and $\hat{\epsilon}_i = y_i - \hat{y}_i = y_i - x_i^T \hat{\beta}$.

2 (c) A popular influence measure for a case i is the ith Cook’s distance

$$CD_i = \left(\frac{1}{p \hat{\sigma}^2} \right) |\hat{y} - \hat{y}_{(i)}|^2$$

where $\hat{y}_{(i)} = X \hat{\beta}_{(i)}$. Show that

$$CD_i = \frac{\hat{\epsilon}_i^2}{\hat{\sigma}^2} \cdot \frac{H_{i,i}}{(1-H_{i,i})^2}$$

2 (d) Case deletion impact on $\hat{\sigma}^2$: Let $\hat{\sigma}^2_{(i)}$ be the unbiased estimate of the residual variance σ^2 when case i is deleted from the data. Show that:

$$\hat{\sigma}^2_{(i)} = \hat{\sigma}^2 + \left(\frac{1}{n-p-1} \right) \left(\hat{\sigma}^2 - \frac{\hat{\epsilon}_i^2}{1-H_{i,i}} \right)$$

Sequential ANOVA in Normal Linear Regression Models via the QR Decomposition

Recall from the lecture notes that the QR-decomposition, $X = QR$ is a factorization of the $n \times p$ matrix X into Q, an $n \times p$ column-orthonormal matrix ($Q^T Q = I_p$, the $p \times p$ identify matrix) times R, a $p \times p$ upper-triangular matrix.

Denoting the jth column of X and of Q by $X_{[j]}$ and $Q_{[j]}$, respectively, we can write out the QR-decomposition for X, column-wise:

$$X_{[1]} = Q_{[1]} R_{1,1}$$
$$X_{[2]} = Q_{[1]} R_{1,2} + Q_{[2]} R_{2,2}$$
$$X_{[3]} = Q_{[1]} R_{1,3} + Q_{[2]} R_{2,3} + Q_{[3]} R_{3,3}$$
$$\vdots$$
$$X_{[p]} = Q_{[1]} R_{1,p} + Q_{[2]} R_{2,p} + Q_{[3]} R_{3,p} + \cdots + Q_{[p]} R_{p,p}$$
A common issue arising in a regression analysis with \(p \) explanatory variables is whether just the first \(k \) \((< p)\) explanatory variables (given by the first \(k \) columns of \(X \)) enter in the regression model. This can be expressed as an hypothesis about the regression parameter \(\beta \),

\[
H_0: \beta_{k+1} = \beta_{k+2} = \cdots = \beta_p \equiv 0.
\]

3 (a) Consider the estimate \(\hat{\beta}_0 = \begin{pmatrix} \hat{\beta}_I \\ 0_{p-k} \end{pmatrix} \) where

\[
\hat{\beta}_I = (X_I^T X_I)^{-1} X_I^T y \\
X_I = [X_{[1]} X_{[2]} \cdots X_{[k]}]
\]

Show that \(\hat{\beta}_0 \) is the constrained least-squares estimate of \(\beta \) corresponding to the hypothesis \(H_0 \), i.e.,

\[
\hat{\beta}_0 \text{ minimizes: } SS(\beta) = (y - X\beta)^T (y - X\beta)
\]

subject to

\[
\hat{\beta}_j = 0, \ j = k + 1, k + 2, \ldots, p.
\]

3 (b) Show that the QR-decomposition of \(X_I \) is \(X_I = Q_I R_I \), where \(Q_I \) is the matrix of the first \(k \) columns of \(Q \) and \(R_I \) is the upper-left \(k \times k \) block of \(R \). Furthermore, verify that:

\[
\hat{\beta}_I = R_I^{-1} Q_I^T y, \text{ and}
\]

\[
\hat{y}_I = H_I y,
\]

where \(H_I = Q_I Q_I^T \), the \(n \times n \) projection/Hat matrix under the null hypothesis.

3 (c) From the lecture notes, recall the definition of

\[
A = \begin{bmatrix} Q^T \\ \ast \end{bmatrix}, \text{ where}
\]

- \(A \) is an \((n \times n)\) orthogonal matrix (i.e. \(A^T = A^{-1} \))
- \(Q \) is the column-orthonormal matrix in a Q-R decomposition of \(X \)

Note: \(W \) can be constructed by continuing the Gram-Schmidt Orthonormalization process (which was used to construct \(Q \) from \(X \)) with \(X^* = [X \ | \ I_n] \).

Then, consider

\[
z = Ay = \begin{bmatrix} Q^T y \\ W^T y \end{bmatrix} = \begin{bmatrix} z_Q \\ z_W \end{bmatrix} \quad (p \times 1) \\
\]

\[
(n - p) \times 1
\]

Prove the following relationships for the unconstrained regression model:
Prove the following relationships for the constrained regression model:

- \(y^T y = y_1^2 + y_2^2 + \cdots + y_n^2 \)
 \(= z_1^2 + z_2^2 + \cdots + z_n^2 \)
- \(\hat{y}^T \hat{y} = \hat{y}_1^2 + \hat{y}_2^2 + \cdots + \hat{y}_n^2 \)
 \(= z_1^2 + z_2^2 + \cdots + z_k^2 + \cdots + z_p^2 \)
- \(\hat{\epsilon}^T \hat{\epsilon} = \hat{\epsilon}_1^2 + \hat{\epsilon}_2^2 + \cdots + \hat{\epsilon}_n^2 \)
 \(= z_{p+1}^2 + z_{p+2}^2 + \cdots + z_n^2 \)

3 (d) Under the assumption of a normal linear regression model, the lecture notes detail how the distribution of \(z = Ay \) is

\[
\begin{align*}
z &= \begin{pmatrix} z_Q \\ z_W \end{pmatrix} \\
&\sim N_n\left[\begin{pmatrix} R\beta \\ O_{n-p} \end{pmatrix}, \sigma^2 I_n \right]
\end{align*}
\]

\[
\begin{align*}
z_Q &\sim N_p[(R\beta), \sigma^2 I_p] \\
z_W &\sim N_{(n-p)}[O_{(n-p)}, \sigma^2 I_{(n-p)}]
\end{align*}
\]

and \(z_Q \) and \(z_W \) are independent.

- For the unconstrained (and the constrained) model, deduce that:
 \(SS_{ERROR} = \hat{\epsilon}^T \hat{\epsilon} \sim \sigma^2 \times \chi_{n-p}^2 \)
 a Chi-Square r.v. with \((n - p)\) degrees of freedom scaled by \(\sigma^2 \).

- For the constrained model under \(H_0 \), deduce that:
 \(SS_{REG(k+1,\ldots,p|1,2,\ldots,k)} = \hat{y}_I^T \hat{y}_I - \hat{y}_I^T \hat{y}_I \)
 \(= \hat{\epsilon}_I^T \hat{\epsilon}_I - \hat{\epsilon}^T \hat{\epsilon} \)
 \(= z_{k+1}^2 + \cdots + z_p^2 \)
 \(\sim \sigma^2 \times \chi_{p-k}^2 \),
 a \(\sigma^2 \) multiple of a Chi-Square r.v. with \((p - k)\) degrees of freedom which is independent of \(SS_{ERROR} \).

- Under \(H_0 \), deduce that the statistic:
\[\hat{F} = \frac{SS_{REG(k+1,...,p|1,2,...,k)}/(p-k)}{SS_{ERROR}/(n-p)} \]

has an F distribution with \((p-k)\) degrees of freedom 'for the numerator' and \((n-p)\) degrees of freedom 'for the denominator.'

It is common practice to summarize in a table the calculations of the F-statistics for testing the null hypothesis that the last \((p-k)\) components of the regression parameter are zero:

ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>Degrees of Freedom</th>
<th>Mean Square</th>
<th>F-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression on ‘1, 2,..., k’</td>
<td>(\hat{y}_I^T \hat{y}_I)</td>
<td>(k)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Regression on ‘k+1,..., p’</td>
<td>(\hat{y}^T \hat{y} - \hat{y}_I^T \hat{y}_I)</td>
<td>((p-k))</td>
<td>(MS_0 = \frac{\hat{y}^T \hat{y} - \hat{y}_I^T \hat{y}_I}{(p-k)})</td>
<td>(F = \frac{MS_0}{MS_{Error}})</td>
</tr>
<tr>
<td>Adjusting for ‘1, 2,..., k’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>(\hat{\epsilon}^T \hat{\epsilon})</td>
<td>((n-p))</td>
<td>(MS_{Error} = \frac{\hat{\epsilon}^T \hat{\epsilon}}{(n-p)})</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(y^T y)</td>
<td>(n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>